Catálogo de publicaciones - libros
Biology of Inositols and Phosphoinositides: Subcellular Biochemistry
A. Lahiri Majumder ; B. B. Biswas (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-27599-4
ISBN electrónico
978-0-387-27600-7
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer 2006
Cobertura temática
Tabla de contenidos
Structure and Nomenclature of Inositol Phosphates, Phosphoinositides, and Glycosylphosphatidylinositols
Pushpalatha P. N. Murthy
Inositol is a deceptively simple molecule. On closer study, a number of sophisticated stereochemical, prochiral, chiral, and conformational issues associated with inositols and their derivatives become evident. Inositols, in particular myo -inositol, play a central role in cellular metabolism. An array of complicated molecules that incorporate the inositol moiety are found in nature. Structural heterogeneity of inositol derivatives is compounded by the presence of stereo- and regioisomers of the inositol unit. Because of the large number of isomeric inositols and their derivatives present in nature, a detailed understanding of the structural, stereochemical, and nomenclature issues involving inositol and its derivatives is essential to investigate biological aspects. A discussion of the stereochemical, conformational, prochiral, chiral, and nomenclature issues associated with inositols and the structural variety of insoitol derivatives is presented in this chapter.
Palabras clave: Phytic Acid; Inositol Phosphate; Conformational Isomer; Inositol Hexakisphosphate; Meso Compound.
Pp. 1-19
Inositol and Plant Cell Wall Polysaccharide Biogenesis
Frank A. Loewus
Palabras clave: Pollen Tube; Phytic Acid; Strawberry Fruit; Acer Pseudoplatanus; Lily Pollen.
Pp. 21-45
Functional Genomics of Inositol Metabolism
Javad Torabinejad; Glenda E. Gillaspy
Palabras clave: MIPS Gene; Nostoc Punctiforme; Inositol Monophosphatase; Inositol Metabolism; MIPS Activity.
Pp. 47-70
Genetics of Inositol Polyphosphates
Victor Raboy; David Bowen
Palabras clave: Phytic Acid; Inositol Phosphate; Aleurone Layer; Inositol Polyphosphate; Protein Storage Vacuole.
Pp. 71-101
Inositol in Bacteria and Archaea
Mary F. Roberts
Palabras clave: Mycobacterium Tuberculosis; Inositol Phosphate; Ino1 Gene; Methanosarcina Barkeri; Methanobacterium Thermoautotrophicum.
Pp. 103-133
Regulation of 1D-myo-Inositol-3-Phosphate Synthase in Yeast
Lilia R. Nunez; Susan A. Henry
Palabras clave: Saccharomyces Cerevisiae; Unfolded Protein Response; INO1 Expression; Phospholipid Metabolism; INO1 Gene.
Pp. 135-156
The Structure and Mechanism of myo-Inositol-1-Phosphate Synthase
James H. Geiger; Xiangshu Jin
The first and rate-limiting step in the biosynthesis of myo -inositol is the conversion of D -glucose 6-phosphate to 1 L - myo -inositol 1-phosphate catalyzed by 1 L - myo -inositol 1-phosphate synthase (MIP synthase). MIP synthase has been identified in a wide variety of organisms from bacteria to humans and is relatively well-conserved throughout evolution. It is probably homotetrameric in most if not all cases and always requires NAD^+ as a cofactor, with NADH being reconverted to NAD^+ in the catalytic cycle. This review focuses on the structure and mechanism of MIP synthase, with a particular emphasis on the mechanistic insights that have come from several recent structures of the enzyme. These include the structure of the enzyme from Saccharomyces cerevisiae, Archeoglobus fulgidus and Mycobacterium tuberculosis .
Palabras clave: Inositol biosynthesis; 1-myo-inositol 1-phosphate synthase; -glucose 6-phosphate; enzyme structure; enzyme mechanism.
Pp. 157-180
Phosphoinositide Metabolism: Towards an Understanding of Subcellular Signaling
Wendy F. Boss; Amanda J. Davis; Yang Ju Im; Rafaelo M. Galvão; ImaraY. Perera
Palabras clave: Guard Cell; Lipid Transfer Protein; Pleckstrin Homology Domain; Lipid Kinase; Inositol Phospholipid.
Pp. 181-205
Cracking the Green Paradigm: Functional Coding of Phosphoinositide Signals in Plant Stress Responses
Laura Zonia; Teun Munnik
Palabras clave: Pollen Tube; Guard Cell; Phosphatidic Acid; Pollen Tube Growth; Hyperosmotic Stress.
Pp. 207-237
Inositols and Their Metabolites in Abiotic and Biotic Stress Responses
Teruaki Taji; Seiji Takahashi; Kazuo Shinozaki
Palabras clave: Guard Cell; Phytic Acid; Ataxia Telangiectasia Mutate; Inositol Phosphate; Hyperosmotic Stress.
Pp. 239-264