Catálogo de publicaciones - revistas

Compartir en
redes sociales


Nature

Resumen/Descripción – provisto por la editorial en inglés
Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 2012 / hasta dic. 2023 Nature.com
No detectada desde jul. 2006 / hasta ago. 2012 Ovid

Información

Tipo de recurso:

revistas

ISSN impreso

0028-0836

ISSN electrónico

1476-4687

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Location in the nucleus foretells chromosome anomalies

Krishnendu Guin; Tom Misteli

Palabras clave: Multidisciplinary.

Pp. 454-455

Disease spread: heating and stirring the global viral soup

Rachel E. Baker; C. Jessica E. Metcalf

Palabras clave: Multidisciplinary.

Pp. 455-456

A microscopic electric motor made of DNA

Henry Hess

Palabras clave: Multidisciplinary.

Pp. 456-457

Extended far-ultraviolet emission in distant dwarf galaxies

Anshuman BorgohainORCID; Kanak SahaORCID; Bruce Elmegreen; Rupjyoti Gogoi; Francoise Combes; Shyam N. Tandon

Palabras clave: Multidisciplinary.

Pp. 459-462

Dynamical topological phase realized in a trapped-ion quantum simulator

Philipp T. DumitrescuORCID; Justin G. Bohnet; John P. Gaebler; Aaron Hankin; David Hayes; Ajesh Kumar; Brian Neyenhuis; Romain Vasseur; Andrew C. PotterORCID

Palabras clave: Multidisciplinary.

Pp. 463-467

Digital quantum simulation of Floquet symmetry-protected topological phases

Xu ZhangORCID; Wenjie JiangORCID; Jinfeng Deng; Ke Wang; Jiachen Chen; Pengfei ZhangORCID; Wenhui Ren; Hang Dong; Shibo XuORCID; Yu Gao; Feitong Jin; Xuhao Zhu; Qiujiang GuoORCID; Hekang LiORCID; Chao Song; Alexey V. GorshkovORCID; Thomas Iadecola; Fangli LiuORCID; Zhe-Xuan Gong; Zhen WangORCID; Dong-Ling DengORCID; H. WangORCID

<jats:title>Abstract</jats:title><jats:p>Quantum many-body systems away from equilibrium host a rich variety of exotic phenomena that are forbidden by equilibrium thermodynamics. A prominent example is that of discrete time crystals<jats:sup>1–8</jats:sup>, in which time-translational symmetry is spontaneously broken in periodically driven systems. Pioneering experiments have observed signatures of time crystalline phases with trapped ions<jats:sup>9,10</jats:sup>, solid-state spin systems<jats:sup>11–15</jats:sup>, ultracold atoms<jats:sup>16,17</jats:sup> and superconducting qubits<jats:sup>18–20</jats:sup>. Here we report the observation of a distinct type of non-equilibrium state of matter, Floquet symmetry-protected topological phases, which are implemented through digital quantum simulation with an array of programmable superconducting qubits. We observe robust long-lived temporal correlations and subharmonic temporal response for the edge spins over up to 40 driving cycles using a circuit of depth exceeding 240 and acting on 26 qubits. We demonstrate that the subharmonic response is independent of the initial state, and experimentally map out a phase boundary between the Floquet symmetry-protected topological and thermal phases. Our results establish a versatile digital simulation approach to exploring exotic non-equilibrium phases of matter with current noisy intermediate-scale quantum processors<jats:sup>21</jats:sup>.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 468-473

Perpendicular full switching of chiral antiferromagnetic order by current

Tomoya HigoORCID; Kouta KondouORCID; Takuya NomotoORCID; Masanobu ShigaORCID; Shoya SakamotoORCID; Xianzhe Chen; Daisuke Nishio-Hamane; Ryotaro AritaORCID; Yoshichika OtaniORCID; Shinji MiwaORCID; Satoru NakatsujiORCID

Palabras clave: Multidisciplinary.

Pp. 474-479

Giant pyroelectricity in nanomembranes

Jie JiangORCID; Lifu Zhang; Chen MingORCID; Hua ZhouORCID; Pritom BoseORCID; Yuwei Guo; Yang Hu; Baiwei Wang; Zhizhong Chen; Ru Jia; Saloni Pendse; Yu XiangORCID; Yaobiao Xia; Zonghuan Lu; Xixing WenORCID; Yao Cai; Chengliang Sun; Gwo-Ching Wang; Toh-Ming Lu; Daniel GallORCID; Yi-Yang Sun; Nikhil Koratkar; Edwin Fohtung; Yunfeng ShiORCID; Jian ShiORCID

Palabras clave: Multidisciplinary.

Pp. 480-485

Coherent interfaces govern direct transformation from graphite to diamond

Kun LuoORCID; Bing LiuORCID; Wentao HuORCID; Xiao DongORCID; Yanbin WangORCID; Quan HuangORCID; Yufei GaoORCID; Lei SunORCID; Zhisheng ZhaoORCID; Yingju WuORCID; Yang ZhangORCID; Mengdong MaORCID; Xiang-Feng ZhouORCID; Julong HeORCID; Dongli YuORCID; Zhongyuan LiuORCID; Bo XuORCID; Yongjun TianORCID

<jats:title>Abstract</jats:title><jats:p>Understanding the direct transformation from graphite to diamond has been a long-standing challenge with great scientific and practical importance. Previously proposed transformation mechanisms<jats:sup>1–3</jats:sup>, based on traditional experimental observations that lacked atomistic resolution, cannot account for the complex nanostructures occurring at graphite−diamond interfaces during the transformation<jats:sup>4,5</jats:sup>. Here we report the identification of coherent graphite−diamond interfaces, which consist of four basic structural motifs, in partially transformed graphite samples recovered from static compression, using high-angle annular dark-field scanning transmission electron microscopy. These observations provide insight into possible pathways of the transformation. Theoretical calculations confirm that transformation through these coherent interfaces is energetically favoured compared with those through other paths previously proposed<jats:sup>1–3</jats:sup>. The graphite-to-diamond transformation is governed by the formation of nanoscale coherent interfaces (diamond nucleation), which, under static compression, advance to consume the remaining graphite (diamond growth). These results may also shed light on transformation mechanisms of other carbon materials and boron nitride under different synthetic conditions.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 486-491

A DNA origami rotary ratchet motor

Anna-Katharina PummORCID; Wouter EngelenORCID; Enzo KoppergerORCID; Jonas IsenseeORCID; Matthias VogtORCID; Viktorija Kozina; Massimo Kube; Maximilian N. HonemannORCID; Eva BertosinORCID; Martin Langecker; Ramin GolestanianORCID; Friedrich C. SimmelORCID; Hendrik DietzORCID

<jats:title>Abstract</jats:title><jats:p>To impart directionality to the motions of a molecular mechanism, one must overcome the random thermal forces that are ubiquitous on such small scales and in liquid solution at ambient temperature. In equilibrium without energy supply, directional motion cannot be sustained without violating the laws of thermodynamics. Under conditions away from thermodynamic equilibrium, directional motion may be achieved within the framework of Brownian ratchets, which are diffusive mechanisms that have broken inversion symmetry<jats:sup>1–5</jats:sup>. Ratcheting is thought to underpin the function of many natural biological motors, such as the F<jats:sub>1</jats:sub>F<jats:sub>0</jats:sub>-ATPase<jats:sup>6–8</jats:sup>, and it has been demonstrated experimentally in synthetic microscale systems (for example, to our knowledge, first in ref. <jats:sup>3</jats:sup>) and also in artificial molecular motors created by organic chemical synthesis<jats:sup>9–12</jats:sup>. DNA nanotechnology<jats:sup>13</jats:sup> has yielded a variety of nanoscale mechanisms, including pivots, hinges, crank sliders and rotary systems<jats:sup>14–17</jats:sup>, which can adopt different configurations, for example, triggered by strand-displacement reactions<jats:sup>18,19</jats:sup> or by changing environmental parameters such as pH, ionic strength, temperature, external fields and by coupling their motions to those of natural motor proteins<jats:sup>20–26</jats:sup>. This previous work and considering low-Reynolds-number dynamics and inherent stochasticity<jats:sup>27,28</jats:sup> led us to develop a nanoscale rotary motor built from DNA origami that is driven by ratcheting and whose mechanical capabilities approach those of biological motors such as F<jats:sub>1</jats:sub>F<jats:sub>0</jats:sub>-ATPase.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 492-498