Catálogo de publicaciones - libros
Who's Who in Orthopedics
Seyed Behrooz Mostofi
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Orthopedics; History of Medicine
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-85233-786-5
ISBN electrónico
978-1-84628-070-2
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag London Limited 2005
Cobertura temática
Tabla de contenidos
Arnold Kirkpatrick Henry 1886–1962
Palabras clave: Royal College; Irish Journal; Trinity College; Undergraduate Education; Postgraduate Training.
Pp. 136-136
Ernest William Hey Groves 1872–1944
Palabras clave: Orthopedic Surgery; Orthopedic Research; American Orthopedic; Versity Hospital; National Health Plan.
Pp. 137-139
Clarence Henry Heyman 1891–1964
Palabras clave: Orthopedic Surgery; Mount Sinai Hospital; Orthopedic Society; Joint Tuberculosis; Boston City Hospital.
Pp. 139-140
Arthur Ralph Hodgson 1915–1993
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 142-143
Albert Hoffa 1859–1908
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 143-143
Michael Hoke 1874–1944
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 144-145
Sir Frank Wild Holdsworth 1904–1969
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 145-147
Verne Thomson Inman 1905–1980
Palabras clave: Orthopedic Surgery; Prosthetic Device; Royal Victoria Hospital; Albert Einstein College; Royal Free Hospital.
Pp. 157-158
John N. Insall 1930–2000
Palabras clave: Royal Victoria Hospital; Hospital Medical School; Femoral Component Rotation; Beth Israel Medical; North American Spine Society.
Pp. 158-160
Bernard Jacobs 1924–1992
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 160-161