Catálogo de publicaciones - libros

Compartir en
redes sociales


Who's Who in Orthopedics

Seyed Behrooz Mostofi

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Orthopedics; History of Medicine

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-85233-786-5

ISBN electrónico

978-1-84628-070-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag London Limited 2005

Tabla de contenidos

Jacques-Malthieu Delpech 1777–1832

Seyed Behrooz Mostofi

Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.

Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.

If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.

Pp. 86-87

Étienne Destot 1864–1918

Seyed Behrooz Mostofi

Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.

Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.

If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.

Pp. 88-88

Herbert Alton Durham 1884–1946

Seyed Behrooz Mostofi

Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.

Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.

If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.

Pp. 92-92

Joseph Gichard Duverney 1648–1730

Palabras clave: Orthopedic Surgeon; Biceps Femoris; French Court; Army Medical Corps; Lecture Tour.

Pp. 92-93

Allan Frederick Dwyer 1920–1975

Palabras clave: General Prac; Formidable Problem; Spinal Correction; Outstanding Ability; Army Medical Corps.

Pp. 93-93

Palmer O. Eicher 1904–1988

Palabras clave: Heart Attack; Mitral Valve Replacement; Intertrochanteric Fracture; Femoral Prosthesis; Bilateral Cataract.

Pp. 94-94

R.C. Elmslie 1878–1940

Palabras clave: Rotator Cuff; Club Foot; Orthopedic Hospital; British Medical Association; Valuable Book.

Pp. 96-97

Otto Anderson Engh 1904–1988

Palabras clave: Club Foot; Brachial Plexus Injury; Orthopedic Society; Spinal Cord Disease; Peripheral Nerve Disease.

Pp. 97-98

Wilhelm Heinrich Erb 1840–1921

Palabras clave: Brachial Plexus; National Hospital; Brachial Plexus Injury; Surgical Specialist; Resistance Movement.

Pp. 98-99

Sigmund Epstein 1880–1970

Palabras clave: Peripheral Nerve; York City; Orthopedic Surgeon; Present Form; Brachial Plexus.

Pp. 98-98