Catálogo de publicaciones - libros
Who's Who in Orthopedics
Seyed Behrooz Mostofi
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Orthopedics; History of Medicine
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-85233-786-5
ISBN electrónico
978-1-84628-070-2
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag London Limited 2005
Cobertura temática
Tabla de contenidos
Peter Gordon Lawrence Essex-Lopresti 1916–1951
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 99-100
Dillwyn Evans 1910–1974
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 100-101
James Ewing 1866–1943
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 101-101
Jean Timothee Emile Foucher 1823–1867
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 105-105
Albert H. Freiberg 1868–1940
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 106-106
Riccardo Galeazzi 1866–1952
Palabras clave: Epiphysial Cartilage; Straight Stem; Product News; Cartilage Transplant; Eminent Physician.
Pp. 111-112
Alfred Baring Garrod 1819–1907
Palabras clave: Public Health; Rheumatoid Arthritis; Foreign Country; Bone Lesion; Professional Life.
Pp. 112-112
Phillipe C.E. Gaucher 1854–1918
Palabras clave: Public Health; Rheumatoid Arthritis; Foreign Country; Bone Lesion; Professional Life.
Pp. 112-112
Gathorne Robert Girdlestone 1881–1950
Palabras clave: Orthopedic Surgery; Hallux Valgus; Orthopedic Hospital; British Orthopedic Association; Colonial Territory.
Pp. 116-118
Denis Joseph Glissan 1889–1958
Palabras clave: Royal Prince Alfred Hospital; Honorary Doctorate; Royal Australian College; Army Medical Corps; Wheelchair Sport.
Pp. 118-120