Catálogo de publicaciones - libros

Compartir en
redes sociales


Who's Who in Orthopedics

Seyed Behrooz Mostofi

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Orthopedics; History of Medicine

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-85233-786-5

ISBN electrónico

978-1-84628-070-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag London Limited 2005

Tabla de contenidos

Peter Gordon Lawrence Essex-Lopresti 1916–1951

Seyed Behrooz Mostofi

Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.

Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.

If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.

Pp. 99-100

Dillwyn Evans 1910–1974

Seyed Behrooz Mostofi

Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.

Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.

If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.

Pp. 100-101

James Ewing 1866–1943

Seyed Behrooz Mostofi

Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.

Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.

If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.

Pp. 101-101

Jean Timothee Emile Foucher 1823–1867

Seyed Behrooz Mostofi

Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.

Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.

If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.

Pp. 105-105

Albert H. Freiberg 1868–1940

Seyed Behrooz Mostofi

Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.

Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.

If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.

Pp. 106-106

Riccardo Galeazzi 1866–1952

Palabras clave: Epiphysial Cartilage; Straight Stem; Product News; Cartilage Transplant; Eminent Physician.

Pp. 111-112

Alfred Baring Garrod 1819–1907

Palabras clave: Public Health; Rheumatoid Arthritis; Foreign Country; Bone Lesion; Professional Life.

Pp. 112-112

Phillipe C.E. Gaucher 1854–1918

Palabras clave: Public Health; Rheumatoid Arthritis; Foreign Country; Bone Lesion; Professional Life.

Pp. 112-112

Gathorne Robert Girdlestone 1881–1950

Palabras clave: Orthopedic Surgery; Hallux Valgus; Orthopedic Hospital; British Orthopedic Association; Colonial Territory.

Pp. 116-118

Denis Joseph Glissan 1889–1958

Palabras clave: Royal Prince Alfred Hospital; Honorary Doctorate; Royal Australian College; Army Medical Corps; Wheelchair Sport.

Pp. 118-120