Catálogo de publicaciones - revistas
Physical Review Applied
Resumen/Descripción – provisto por la editorial en inglés
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jun. 2014 / hasta dic. 2023 | Physical Review Journals (APS) |
Información
Tipo de recurso:
revistas
ISSN electrónico
2331-7019
Editor responsable
American Physical Society (APS)
País de edición
Estados Unidos
Fecha de publicación
2014-
Cobertura temática
Tabla de contenidos
Inertial geometric quantum logic gates
D. Turyansky; O. Ovdat; R. Dann; Z. Aqua; R. Kosloff; B. Dayan; A. Pick
Pp. No disponible
Topological phase transition of photonic Chern insulators by multi-Mie-resonance inversion
Hui Huang; Junzheng Hu; Xiaofei Ye; Shiqi Li; Haotian Li; Yao Jiang; Minghui Lu; Peng Zhan
Pp. No disponible
Reconfigurable manipulation of perovskite nanoparticles with a cusp-catastrophe Bessel beam
Haixia Wu; Liu Tan; Hui Huang; Xiaofang Lu; Huanpeng Liang; Tao Lin; Bingsuo Zou; Peilong Hong; Yu-Xuan Ren; Yi Liang
Pp. No disponible
Strain effects on the magnon-magnon interaction and magnon relaxation time in ferromagnetic
Cr Ge Te
Ke Wang; Kai Ren; Yinlong Hou; Dan Yang; Gang Zhang
Pp. No disponible
Harnessing thermal waves for heat pumping
Jose Ordonez-Miranda; Roman Anufriev; Masahiro Nomura; Sebastian Volz
Pp. No disponible
Influence of chemical strains on the electrocaloric response, polarization morphology, tetragonality, and negative-capacitance effect of ferroelectric core-shell nanorods and nanowires
Anna N. Morozovska; Eugene A. Eliseev; Olha A. Kovalenko; Dean R. Evans
<jats:p>Using Landau-Ginzburg-Devonshire (LGD) approach, we proposed the analytical description of the influence of chemical strains on spontaneous polarization and the electrocaloric response in ferroelectric core-shell nanorods. We postulate that the nanorod core presents a defect-free single-crystalline ferroelectric material, and elastic defects are accumulated in the ultrathin shell, where they can induce tensile or compressive chemical strains. Finite-element modeling (FEM) based on the LGD approach reveals transitions of domain-structure morphology induced by chemical strains in the <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><a:msub><a:mrow><a:mi>Ba</a:mi><a:mi>Ti</a:mi><a:mi mathvariant="normal">O</a:mi></a:mrow><a:mn>3</a:mn></a:msub></a:math> nanorods. Namely, tensile chemical strains induce and support the single-domain state in the central part of the nanorod, while the curled domain structures appear near the unscreened or partially screened ends of the rod. The vortexlike domains propagate toward the central part of the rod and fill it entirely, when the rod is covered by a shell with compressive chemical strains above some critical value. The critical value depends on the nanorod sizes, aspect ratio, and screening conditions at its ends. Both analytical theory and FEM predict that the tensile chemical strains in the shell increase the nanorod polarization, lattice tetragonality, and electrocaloric response well above the values corresponding to the bulk material. The physical reason for the increase is strong electrostriction coupling between the mismatch-type elastic strains induced in the core by chemical strains in the shell. Comparison with earlier XRD data confirmed an increase of the tetragonality ratio in tensile <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><e:msub><e:mrow><e:mi>Ba</e:mi><e:mi>Ti</e:mi><e:mi mathvariant="normal">O</e:mi></e:mrow><e:mn>3</e:mn></e:msub></e:math> nanorods compared to the bulk material. Obtained analytical expressions, which are suitable for the description of strain-induced changes in a wide range of multiaxial ferroelectric core-shell nanorods and nanowires, can be useful for strain engineering of advanced ferroelectric nanomaterials for energy storage, harvesting, electrocaloric applications, and negative capacitance elements.</jats:p> <jats:sec> <jats:title/> <jats:supplementary-material> <jats:permissions> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material> </jats:sec>
Pp. No disponible
Editorial: Coauthor! Coauthor!
Randall D. Kamien; Daniel Ucko
Pp. No disponible
Direct readout of a nitrogen-vacancy hybrid-spin quantum register in diamond by analysis of photon arrival time
Jingyan He; Yu Tian; Zhiyi Hu; Runchuan Ye; Xiangyu Wang; Dawei Lu; Nanyang Xu
Pp. No disponible
Harnessing the superconducting diode effect through inhomogeneous magnetic fields
Leonardo Rodrigues Cadorim; Edson Sardella; Clécio C. de Souza Silva
Pp. No disponible
Solution to the cocktail party problem: A time-reversal active metasurface for multipoint focusing
Constant Bourdeloux; Mathias Fink; Fabrice Lemoult
<jats:p>The cocktail party effect is the capability to focus one’s auditory attention on particular audio sources while ignoring other audio sources. We propose an experimental strategy to reproduce this ability by designing a time-dependent metasurface composed of independent active mirrors. Each active mirror is a programmable acoustic unit cell capable of hearing, computing, and re-emitting acoustic signals: each of them acts as a convolution filter. The proper configuration of the metasurface temporal filters allows one to establish an acoustic communication link between groups of individuals immersed in the noisy environment: a multiple-user multiple-input, multiple-output acoustic system is built.</jats:p> <jats:sec> <jats:title/> <jats:supplementary-material> <jats:permissions> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material> </jats:sec>
Pp. No disponible