Catálogo de publicaciones - revistas

Compartir en
redes sociales


Science

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde mar. 1997 / hasta dic. 2023 Science Journals

Información

Tipo de recurso:

revistas

ISSN impreso

0036-8075

ISSN electrónico

1095-9203

Editor responsable

American Association for the Advancement of Science (AAAS)

País de edición

Estados Unidos

Fecha de publicación

Cobertura temática

Tabla de contenidos

Germ Cell Genes and Cancer

Xiaoyun Wu; Gary Ruvkun

<jats:p>In fruit flies, genes that help to program germ cells also play a role in a brain cancer.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 1761-1762

Allan Sandage (1926–2010)

Donald Lynden-Bell

<jats:p>An astronomer launched the field of observational cosmology and influenced our view of the universe over the past half-century.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 1763-1763

Science 101: Building the Foundations for Real Understanding

Anastasia Thanukos; Judith G. Scotchmoor; Roy Caldwell; David R. Lindberg

<jats:p>Two online projects offer one-stop shopping for teaching evolution, as well as the nature and process of science.</jats:p>

Palabras clave: Multidisciplinary.

Pp. 1764-1765

AAAS News and Notes

<jats:p> A monthly roundup of recent news and projects of <jats:italic>Science</jats:italic> 's publisher, the American Association for the Advancement of Science. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 1766-1767

Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System?

Yun Kyung Lee; Sarkis K. Mazmanian

<jats:title>A Gutsy Analysis</jats:title> <jats:p> Efforts to sequence the human microbiome—the genomes of all the microbes that inhabit our bodies—have demonstrated its enormous diversity. Analyses to probe the various functions of the microbiota, particularly of those that reside in the gut, have revealed that our microbiota has a profound impact on the development and function of our immune systems. <jats:bold>Lee and Mazmanian</jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="1768" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1195568">1768</jats:related-article> ) review how the microbiota influences the development of the adaptive immune system. Specific species and families of microbiota support the differentiation of particular populations of T cells, and alterations in intestinal microbiota affect the development of inflammation and autoimmunity. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 1768-1773

Decreased Clearance of CNS β-Amyloid in Alzheimer’s Disease

Kwasi G. Mawuenyega; Wendy Sigurdson; Vitaliy Ovod; Ling Munsell; Tom Kasten; John C. Morris; Kevin E. Yarasheski; Randall J. Bateman

<jats:p>Alzheimer’s disease is associated with reduced β-amyloid clearance from the brain</jats:p>

Palabras clave: Multidisciplinary.

Pp. 1774-1774

Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project

Mark B. Gerstein; Zhi John Lu; Eric L. Van Nostrand; Chao Cheng; Bradley I. Arshinoff; Tao Liu; Kevin Y. Yip; Rebecca Robilotto; Andreas Rechtsteiner; Kohta Ikegami; Pedro Alves; Aurelien Chateigner; Marc Perry; Mitzi Morris; Raymond K. Auerbach; Xin Feng; Jing Leng; Anne Vielle; Wei Niu; Kahn Rhrissorrakrai; Ashish Agarwal; Roger P. Alexander; Galt Barber; Cathleen M. Brdlik; Jennifer Brennan; Jeremy Jean Brouillet; Adrian Carr; Ming-Sin Cheung; Hiram Clawson; Sergio Contrino; Luke O. Dannenberg; Abby F. Dernburg; Arshad Desai; Lindsay Dick; Andréa C. Dosé; Jiang Du; Thea Egelhofer; Sevinc Ercan; Ghia Euskirchen; Brent Ewing; Elise A. Feingold; Reto Gassmann; Peter J. Good; Phil Green; Francois Gullier; Michelle Gutwein; Mark S. Guyer; Lukas Habegger; Ting Han; Jorja G. Henikoff; Stefan R. Henz; Angie Hinrichs; Heather Holster; Tony Hyman; A. Leo Iniguez; Judith Janette; Morten Jensen; Masaomi Kato; W. James Kent; Ellen Kephart; Vishal Khivansara; Ekta Khurana; John K. Kim; Paulina Kolasinska-Zwierz; Eric C. Lai; Isabel Latorre; Amber Leahey; Suzanna Lewis; Paul Lloyd; Lucas Lochovsky; Rebecca F. Lowdon; Yaniv Lubling; Rachel Lyne; Michael MacCoss; Sebastian D. Mackowiak; Marco Mangone; Sheldon McKay; Desirea Mecenas; Gennifer Merrihew; David M. Miller; Andrew Muroyama; John I. Murray; Siew-Loon Ooi; Hoang Pham; Taryn Phippen; Elicia A. Preston; Nikolaus Rajewsky; Gunnar Rätsch; Heidi Rosenbaum; Joel Rozowsky; Kim Rutherford; Peter Ruzanov; Mihail Sarov; Rajkumar Sasidharan; Andrea Sboner; Paul Scheid; Eran Segal; Hyunjin Shin; Chong Shou; Frank J. Slack; Cindie Slightam; Richard Smith; William C. Spencer; E. O. Stinson; Scott Taing; Teruaki Takasaki; Dionne Vafeados; Ksenia Voronina; Guilin Wang; Nicole L. Washington; Christina M. Whittle; Beijing Wu; Koon-Kiu Yan; Georg Zeller; Zheng Zha; Mei Zhong; Xingliang Zhou; Julie Ahringer; Susan Strome; Kristin C. Gunsalus; Gos Micklem; X. Shirley Liu; Valerie Reinke; Stuart K. Kim; LaDeana W. Hillier; Steven Henikoff; Fabio Piano; Michael Snyder; Lincoln Stein; Jason D. Lieb; Robert H. Waterston;

<jats:title>From Genome to Regulatory Networks</jats:title> <jats:p> For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by <jats:bold> <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" issue="6012" page="1758" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1200700">Blaxter</jats:related-article> </jats:bold> ). In this vein, <jats:bold> Gerstein <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="1775" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1196914">1775</jats:related-article> ) summarize for the <jats:italic>Caenorhabditis elegans</jats:italic> genome, and <jats:bold>The modENCODE Consortium</jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="1787" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1198374">1787</jats:related-article> ) summarize for the <jats:italic>Drosophila melanogaster</jats:italic> genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 1775-1787

Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE

; Sushmita Roy; Jason Ernst; Peter V. Kharchenko; Pouya Kheradpour; Nicolas Negre; Matthew L. Eaton; Jane M. Landolin; Christopher A. Bristow; Lijia Ma; Michael F. Lin; Stefan Washietl; Bradley I. Arshinoff; Ferhat Ay; Patrick E. Meyer; Nicolas Robine; Nicole L. Washington; Luisa Di Stefano; Eugene Berezikov; Christopher D. Brown; Rogerio Candeias; Joseph W. Carlson; Adrian Carr; Irwin Jungreis; Daniel Marbach; Rachel Sealfon; Michael Y. Tolstorukov; Sebastian Will; Artyom A. Alekseyenko; Carlo Artieri; Benjamin W. Booth; Angela N. Brooks; Qi Dai; Carrie A. Davis; Michael O. Duff; Xin Feng; Andrey A. Gorchakov; Tingting Gu; Jorja G. Henikoff; Philipp Kapranov; Renhua Li; Heather K. MacAlpine; John Malone; Aki Minoda; Jared Nordman; Katsutomo Okamura; Marc Perry; Sara K. Powell; Nicole C. Riddle; Akiko Sakai; Anastasia Samsonova; Jeremy E. Sandler; Yuri B. Schwartz; Noa Sher; Rebecca Spokony; David Sturgill; Marijke van Baren; Kenneth H. Wan; Li Yang; Charles Yu; Elise Feingold; Peter Good; Mark Guyer; Rebecca Lowdon; Kami Ahmad; Justen Andrews; Bonnie Berger; Steven E. Brenner; Michael R. Brent; Lucy Cherbas; Sarah C. R. Elgin; Thomas R. Gingeras; Robert Grossman; Roger A. Hoskins; Thomas C. Kaufman; William Kent; Mitzi I. Kuroda; Terry Orr-Weaver; Norbert Perrimon; Vincenzo Pirrotta; James W. Posakony; Bing Ren; Steven Russell; Peter Cherbas; Brenton R. Graveley; Suzanna Lewis; Gos Micklem; Brian Oliver; Peter J. Park; Susan E. Celniker; Steven Henikoff; Gary H. Karpen; Eric C. Lai; David M. MacAlpine; Lincoln D. Stein; Kevin P. White; Manolis Kellis; David Acevedo; Richard Auburn; Galt Barber; Hugo J. Bellen; Eric P. Bishop; Terri D. Bryson; Aurelien Chateigner; Jia Chen; Hiram Clawson; Charles L. G. Comstock; Sergio Contrino; Leyna C. DeNapoli; Queying Ding; Alex Dobin; Marc H. Domanus; Jorg Drenkow; Sandrine Dudoit; Jackie Dumais; Thomas Eng; Delphine Fagegaltier; Sarah E. Gadel; Srinka Ghosh; Francois Guillier; David Hanley; Gregory J. Hannon; Kasper D. Hansen; Elizabeth Heinz; Angie S. Hinrichs; Martin Hirst; Sonali Jha; Lichun Jiang; Youngsook L. Jung; Helena Kashevsky; Cameron D. Kennedy; Ellen T. Kephart; Laura Langton; Ok-Kyung Lee; Sharon Li; Zirong Li; Wei Lin; Daniela Linder-Basso; Paul Lloyd; Rachel Lyne; Sarah E. Marchetti; Marco Marra; Nicolas R. Mattiuzzo; Sheldon McKay; Folker Meyer; David Miller; Steven W. Miller; Richard A. Moore; Carolyn A. Morrison; Joseph A. Prinz; Michelle Rooks; Richard Moore; Kim M. Rutherford; Peter Ruzanov; Douglas A. Scheftner; Lionel Senderowicz; Parantu K. Shah; Gregory Shanower; Richard Smith; E. O. Stinson; Sarah Suchy; Aaron E. Tenney; Feng Tian; Koen J. T. Venken; Huaien Wang; Robert White; Jared Wilkening; Aarron T. Willingham; Chris Zaleski; Zheng Zha; Dayu Zhang; Yongjun Zhao; Jennifer Zieba

<jats:title>From Genome to Regulatory Networks</jats:title> <jats:p> For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by <jats:bold> <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" issue="6012" page="1758" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1200700">Blaxter</jats:related-article> </jats:bold> ). In this vein, <jats:bold> Gerstein <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="1775" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1196914">1775</jats:related-article> ) summarize for the <jats:italic>Caenorhabditis elegans</jats:italic> genome, and <jats:bold>The modENCODE Consortium</jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="1787" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1198374">1787</jats:related-article> ) summarize for the <jats:italic>Drosophila melanogaster</jats:italic> genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 1787-1797

High-Flux Solar-Driven Thermochemical Dissociation of CO 2 and H 2 O Using Nonstoichiometric Ceria

William C. Chueh; Christoph Falter; Mandy Abbott; Danien Scipio; Philipp Furler; Sossina M. Haile; Aldo Steinfeld

<jats:title>Fuel from Heat</jats:title> <jats:p> Plants grow by using energy from the Sun to convert carbon dioxide into sugar-based polymers and aromatics. These compounds in turn can be stripped of their oxygen, either through millennia of underground degradation to yield fossil fuels, or through a rather more rapid process of dissolution, fermentation, and hydrogenation to yield biofuels. Can we use sunlight to turn CO <jats:sub>2</jats:sub> into hydrocarbon fuel without relying on the intervening steps of plant growth and breakdown? <jats:bold> Chueh <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="1797" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1197834">1797</jats:related-article> ) demonstrate one possible approach, in which concentrated sunlight heats cerium oxide to a sufficiently high temperature (∼1500°C) to liberate some oxygen from its lattice. The material then readily strips O atoms from either water or CO <jats:sub>2</jats:sub> , yielding hydrogen or CO, which can then be combined to form fuels. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 1797-1801

Spin Hall Effect Transistor

Jörg Wunderlich; Byong-Guk Park; Andrew C. Irvine; Liviu P. Zârbo; Eva Rozkotová; Petr Nemec; Vít Novák; Jairo Sinova; Tomás Jungwirth

<jats:title>In a Spin Hall</jats:title> <jats:p> The spin Hall effect, in which an electrical current causes accumulation of electron spins of opposite signs in the direction transverse to the current flow, provides a promising avenue of research in exploiting the spin degree of freedom in electronic devices. However, implementing the effect in a device is challenging. <jats:bold> Wunderlich <jats:italic>et al.</jats:italic> </jats:bold> (p. <jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" page="1801" related-article-type="in-this-issue" vol="330" xlink:href="10.1126/science.1195816">1801</jats:related-article> ) combine the concept of the spin Hall effect with that of a spin transistor, and build a nonmagnetic device in a which a spin current, injected by optical means, is “stripped” of its charge component, goes through a spin-modulation layer, and is detected using the inverse spin Hall effect. Such manipulation of the spin current may help in future spintronic applications. </jats:p>

Palabras clave: Multidisciplinary.

Pp. 1801-1804