Catálogo de publicaciones - libros
Concepts in Plant Metabolomics
Basil J. Nikolau ; Eve Syrkin Wurtele (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-5607-9
ISBN electrónico
978-1-4020-5608-6
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer Science+Business Media B.V. 2007
Cobertura temática
Tabla de contenidos
Validated High Quality Automated Metabolome Analysis of Leaf Disks
Oliver Fiehn
Introductions of non-indigenous species to new ecosystems are one of the major threats to biodiversity, ecosystem functions and services. Globally, species introductions may lead to biotic homogenisation, in synergy with other anthropogenic disturbances such as climate change and coastal pollution. Successful marine introductions depend on (1) presence of a transport vector, uptake of propagules and journey survival of the species; (2) suitable environmental conditions in the receiving habitat; and (3) biological traits of the invader to facilitate establishment. Knowledge has improved of the distribution, biology and ecology of high profile seaweed invaders, e.g. ssp. , and . Limited, regional information is available for less conspicuous species. The mechanisms of seaweed introductions are little understood as research on introduced seaweeds has been mostly reactive, following discoveries of introductions. Sources of introductions mostly cannot be determined with certainty apart from those directly associated with aquaculture activities and few studies have addressed the sometimes serious ecological and economic impacts of seaweed introductions. Future research needs to elucidate the invasion process, interactions between invaders, and impacts of introductions to support prevention and management of seaweed introductions.
Pp. 1-18
GC-MS Peak Labeling Under ArMet
Helen Jenkins; Manfred Beckmann; John Draper; Nigel Hardy
Introductions of non-indigenous species to new ecosystems are one of the major threats to biodiversity, ecosystem functions and services. Globally, species introductions may lead to biotic homogenisation, in synergy with other anthropogenic disturbances such as climate change and coastal pollution. Successful marine introductions depend on (1) presence of a transport vector, uptake of propagules and journey survival of the species; (2) suitable environmental conditions in the receiving habitat; and (3) biological traits of the invader to facilitate establishment. Knowledge has improved of the distribution, biology and ecology of high profile seaweed invaders, e.g. ssp. , and . Limited, regional information is available for less conspicuous species. The mechanisms of seaweed introductions are little understood as research on introduced seaweeds has been mostly reactive, following discoveries of introductions. Sources of introductions mostly cannot be determined with certainty apart from those directly associated with aquaculture activities and few studies have addressed the sometimes serious ecological and economic impacts of seaweed introductions. Future research needs to elucidate the invasion process, interactions between invaders, and impacts of introductions to support prevention and management of seaweed introductions.
Pp. 19-28
Metabolomics and Plant Quantitative Trait Locus Analysis – The Optimum Genetical Genomics Platform?
Daniel J. Kliebenstein
Introductions of non-indigenous species to new ecosystems are one of the major threats to biodiversity, ecosystem functions and services. Globally, species introductions may lead to biotic homogenisation, in synergy with other anthropogenic disturbances such as climate change and coastal pollution. Successful marine introductions depend on (1) presence of a transport vector, uptake of propagules and journey survival of the species; (2) suitable environmental conditions in the receiving habitat; and (3) biological traits of the invader to facilitate establishment. Knowledge has improved of the distribution, biology and ecology of high profile seaweed invaders, e.g. ssp. , and . Limited, regional information is available for less conspicuous species. The mechanisms of seaweed introductions are little understood as research on introduced seaweeds has been mostly reactive, following discoveries of introductions. Sources of introductions mostly cannot be determined with certainty apart from those directly associated with aquaculture activities and few studies have addressed the sometimes serious ecological and economic impacts of seaweed introductions. Future research needs to elucidate the invasion process, interactions between invaders, and impacts of introductions to support prevention and management of seaweed introductions.
Pp. 29-44
Design of Metabolite Recovery by Variations of the Metabolite Profiling Protocol
Claudia Birkemeyer; Joachim Kopka
Introductions of non-indigenous species to new ecosystems are one of the major threats to biodiversity, ecosystem functions and services. Globally, species introductions may lead to biotic homogenisation, in synergy with other anthropogenic disturbances such as climate change and coastal pollution. Successful marine introductions depend on (1) presence of a transport vector, uptake of propagules and journey survival of the species; (2) suitable environmental conditions in the receiving habitat; and (3) biological traits of the invader to facilitate establishment. Knowledge has improved of the distribution, biology and ecology of high profile seaweed invaders, e.g. ssp. , and . Limited, regional information is available for less conspicuous species. The mechanisms of seaweed introductions are little understood as research on introduced seaweeds has been mostly reactive, following discoveries of introductions. Sources of introductions mostly cannot be determined with certainty apart from those directly associated with aquaculture activities and few studies have addressed the sometimes serious ecological and economic impacts of seaweed introductions. Future research needs to elucidate the invasion process, interactions between invaders, and impacts of introductions to support prevention and management of seaweed introductions.
Pp. 45-69
ncovering the Plant Metabolome: Current and Future Challenges
Ute Roessner-Tunali
Introductions of non-indigenous species to new ecosystems are one of the major threats to biodiversity, ecosystem functions and services. Globally, species introductions may lead to biotic homogenisation, in synergy with other anthropogenic disturbances such as climate change and coastal pollution. Successful marine introductions depend on (1) presence of a transport vector, uptake of propagules and journey survival of the species; (2) suitable environmental conditions in the receiving habitat; and (3) biological traits of the invader to facilitate establishment. Knowledge has improved of the distribution, biology and ecology of high profile seaweed invaders, e.g. ssp. , and . Limited, regional information is available for less conspicuous species. The mechanisms of seaweed introductions are little understood as research on introduced seaweeds has been mostly reactive, following discoveries of introductions. Sources of introductions mostly cannot be determined with certainty apart from those directly associated with aquaculture activities and few studies have addressed the sometimes serious ecological and economic impacts of seaweed introductions. Future research needs to elucidate the invasion process, interactions between invaders, and impacts of introductions to support prevention and management of seaweed introductions.
Pp. 71-85
Lipidomics: ESI-MS/MS-Based Profiling to Determine the Function of Genes Involved in Metabolism of Complex Lipids
Ruth Welti; Mary R. Roth; Youping Deng; Jyoti Shah; Xuemin Wang
Introductions of non-indigenous species to new ecosystems are one of the major threats to biodiversity, ecosystem functions and services. Globally, species introductions may lead to biotic homogenisation, in synergy with other anthropogenic disturbances such as climate change and coastal pollution. Successful marine introductions depend on (1) presence of a transport vector, uptake of propagules and journey survival of the species; (2) suitable environmental conditions in the receiving habitat; and (3) biological traits of the invader to facilitate establishment. Knowledge has improved of the distribution, biology and ecology of high profile seaweed invaders, e.g. ssp. , and . Limited, regional information is available for less conspicuous species. The mechanisms of seaweed introductions are little understood as research on introduced seaweeds has been mostly reactive, following discoveries of introductions. Sources of introductions mostly cannot be determined with certainty apart from those directly associated with aquaculture activities and few studies have addressed the sometimes serious ecological and economic impacts of seaweed introductions. Future research needs to elucidate the invasion process, interactions between invaders, and impacts of introductions to support prevention and management of seaweed introductions.
Pp. 87-92
Time-Series Integrated Metabolomic and Transcriptional Profiling Analyses
H. Kanani; B. Dutta; J. Quackenbush; M. I. Klapa
Introductions of non-indigenous species to new ecosystems are one of the major threats to biodiversity, ecosystem functions and services. Globally, species introductions may lead to biotic homogenisation, in synergy with other anthropogenic disturbances such as climate change and coastal pollution. Successful marine introductions depend on (1) presence of a transport vector, uptake of propagules and journey survival of the species; (2) suitable environmental conditions in the receiving habitat; and (3) biological traits of the invader to facilitate establishment. Knowledge has improved of the distribution, biology and ecology of high profile seaweed invaders, e.g. ssp. , and . Limited, regional information is available for less conspicuous species. The mechanisms of seaweed introductions are little understood as research on introduced seaweeds has been mostly reactive, following discoveries of introductions. Sources of introductions mostly cannot be determined with certainty apart from those directly associated with aquaculture activities and few studies have addressed the sometimes serious ecological and economic impacts of seaweed introductions. Future research needs to elucidate the invasion process, interactions between invaders, and impacts of introductions to support prevention and management of seaweed introductions.
Pp. 93-110
Metabolomics of Cuticular Waxes: A System for Metabolomics Analysis of a Single Tissue-Type in a Multicellular Organism
M. Ann D. N. Perera; Basil J. Nikolau
Introductions of non-indigenous species to new ecosystems are one of the major threats to biodiversity, ecosystem functions and services. Globally, species introductions may lead to biotic homogenisation, in synergy with other anthropogenic disturbances such as climate change and coastal pollution. Successful marine introductions depend on (1) presence of a transport vector, uptake of propagules and journey survival of the species; (2) suitable environmental conditions in the receiving habitat; and (3) biological traits of the invader to facilitate establishment. Knowledge has improved of the distribution, biology and ecology of high profile seaweed invaders, e.g. ssp. , and . Limited, regional information is available for less conspicuous species. The mechanisms of seaweed introductions are little understood as research on introduced seaweeds has been mostly reactive, following discoveries of introductions. Sources of introductions mostly cannot be determined with certainty apart from those directly associated with aquaculture activities and few studies have addressed the sometimes serious ecological and economic impacts of seaweed introductions. Future research needs to elucidate the invasion process, interactions between invaders, and impacts of introductions to support prevention and management of seaweed introductions.
Pp. 111-123
Metabolic Flux Maps of Central Carbon Metabolismin Plant Systems
V. V. Iyer; G. Sriram; J. V. Shanks
Introductions of non-indigenous species to new ecosystems are one of the major threats to biodiversity, ecosystem functions and services. Globally, species introductions may lead to biotic homogenisation, in synergy with other anthropogenic disturbances such as climate change and coastal pollution. Successful marine introductions depend on (1) presence of a transport vector, uptake of propagules and journey survival of the species; (2) suitable environmental conditions in the receiving habitat; and (3) biological traits of the invader to facilitate establishment. Knowledge has improved of the distribution, biology and ecology of high profile seaweed invaders, e.g. ssp. , and . Limited, regional information is available for less conspicuous species. The mechanisms of seaweed introductions are little understood as research on introduced seaweeds has been mostly reactive, following discoveries of introductions. Sources of introductions mostly cannot be determined with certainty apart from those directly associated with aquaculture activities and few studies have addressed the sometimes serious ecological and economic impacts of seaweed introductions. Future research needs to elucidate the invasion process, interactions between invaders, and impacts of introductions to support prevention and management of seaweed introductions.
Pp. 125-144
MetNet: Systems Biology Tools for Arabidopsis
Eve Syrkin Wurtele; Ling Li; Dan Berleant; Dianne Cook; Julie A. Dickerson; Jing Ding; Heike Hofmann; Michael Lawrence; Eun-kyung Lee; Jie Li; Wieslawa Mentzen; Leslie Miller; Basil J. Nikolau; Nick Ransom; Yingjun Wang
Introductions of non-indigenous species to new ecosystems are one of the major threats to biodiversity, ecosystem functions and services. Globally, species introductions may lead to biotic homogenisation, in synergy with other anthropogenic disturbances such as climate change and coastal pollution. Successful marine introductions depend on (1) presence of a transport vector, uptake of propagules and journey survival of the species; (2) suitable environmental conditions in the receiving habitat; and (3) biological traits of the invader to facilitate establishment. Knowledge has improved of the distribution, biology and ecology of high profile seaweed invaders, e.g. ssp. , and . Limited, regional information is available for less conspicuous species. The mechanisms of seaweed introductions are little understood as research on introduced seaweeds has been mostly reactive, following discoveries of introductions. Sources of introductions mostly cannot be determined with certainty apart from those directly associated with aquaculture activities and few studies have addressed the sometimes serious ecological and economic impacts of seaweed introductions. Future research needs to elucidate the invasion process, interactions between invaders, and impacts of introductions to support prevention and management of seaweed introductions.
Pp. 145-157