Catálogo de publicaciones - revistas
Chinese Physics C
Resumen/Descripción – provisto por la editorial en inglés
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of Particle physics; Nuclear physics; Astrophysics and cosmology related to particles and nuclei; Detectors and experimental methods; Accelerators; Synchrotron radiationand other related fields.Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2008 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
1674-1137
Editor responsable
Chinese Physical Society (CPS)
País de edición
China
Fecha de publicación
2008-
Cobertura temática
Tabla de contenidos
Squeezed back-to-back correlations of K +K −in d + Au collisions at =200 GeV and Au + Au collisions at = 62.4 GeV *
Yong Zhang; Jing Yang; Weihua Wu
<jats:title>Abstract</jats:title> <jats:p>We investigate the squeezed back-to-back correlations (BBC) of <jats:inline-formula> <jats:tex-math><?CDATA $ K^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M5.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ K^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M6.jpg" xlink:type="simple" /> </jats:inline-formula>, caused by the mass modification of particles in the dense medium formed in d + Au collisions at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s_{NN}} = 200 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M7.jpg" xlink:type="simple" /> </jats:inline-formula> GeV and Au + Au collisions at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s_{NN}} = 62.4 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M8.jpg" xlink:type="simple" /> </jats:inline-formula> GeV. Considering that some kaons may not be affected by the medium, we further study the BBC functions of <jats:inline-formula> <jats:tex-math><?CDATA $ K^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M9.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ K^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M10.jpg" xlink:type="simple" /> </jats:inline-formula> when parts of all kaons have a mass-shift. Our results indicate that the BBC functions of <jats:inline-formula> <jats:tex-math><?CDATA $ K^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M11.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ K^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M12.jpg" xlink:type="simple" /> </jats:inline-formula> can be observed when only ~10% of all kaons have a mass-shift in d + Au collisions at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s_{NN}} = 200 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M14.jpg" xlink:type="simple" /> </jats:inline-formula> GeV and the peripheral collisions of Au + Au at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s_{NN}} = 62.4 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M15.jpg" xlink:type="simple" /> </jats:inline-formula> GeV. Since the BBC function is caused by the mass-shift due to the interactions between the particle and the medium, the successful detection of the BBC function indirectly marks that the dense medium has formed in these collision systems. We suggest the experimental measurement of the BBC function of <jats:inline-formula> <jats:tex-math><?CDATA $ K^+ $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M16.jpg" xlink:type="simple" /> </jats:inline-formula> <jats:inline-formula> <jats:tex-math><?CDATA $ K^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M17.jpg" xlink:type="simple" /> </jats:inline-formula> in d + Au collisions at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s_{NN}} = 200 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M18.jpg" xlink:type="simple" /> </jats:inline-formula> GeV and peripheral collisions of Au + Au at <jats:inline-formula> <jats:tex-math><?CDATA $ \sqrt{s_{NN}} = 62.4 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074105_M19.jpg" xlink:type="simple" /> </jats:inline-formula> GeV. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074105
A close look at the competition of isovector and isoscalar pairing in A=18 and 20 even-even N≈Z nuclei *
Feng Pan; Dan Zhou; Siyu Yang; Grigor Sargsyan; Yingwen He; Kristina D. Launey; Jerry P. Draayer
<jats:title>Abstract</jats:title> <jats:p>The competition of isovector and isoscalar pairing in <jats:italic>A</jats:italic>=18 and 20 even-even <jats:italic>N</jats:italic>≈<jats:italic>Z</jats:italic> nuclei is analyzed in the framework of the mean-field plus the dynamic quadurpole-quadurpole, pairing and particle-hole interactions, whose Hamiltonian is diagonalized in the basis <jats:inline-formula> <jats:tex-math><?CDATA ${ U}(24) \supset ({ U}(6)\supset {{SU}}(3)\supset {{SO}}(3)) \otimes ({ U}(4)\supset{ {SU}}_S(2)\otimes {{SU}}_T(2)) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074106_Z-20190515013941-2.jpg" xlink:type="simple" /> </jats:inline-formula> in the <jats:italic>L</jats:italic> = 0 configuration subspace. Besides the pairing interaction, it is observed that the quadurpole-quadurpole and particle-hole interactions also play a significant role in determining the relative positions of low-lying excited 0<jats:sup>+</jats:sup> and 1<jats:sup>+</jats:sup> levels and their energy gaps, which can result in the ground state first-order quantum phase transition from <jats:italic>J</jats:italic> = 0 to <jats:italic>J</jats:italic> = 1. The strengths of the isovector and isoscalar pairing interactions in these even-even nuclei are estimated with respect to the energy gap and the total contribution to the binding energy. Most importantly, it is shown that although the mechanism of the particle-hole contribution to the binding energy is different, it is indirectly related to the Wigner term in the binding energy. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074106
Restoration of pseudo-spin symmetry in N = 32 and N = 34 isotonesdescribed by relativistic Hartree-Fock theory *
Zheng-Zheng Li; Shi-Yao Chang; Qiang Zhao; Wen-Hui Long; Yi-Fei Niu
<jats:title>Abstract</jats:title> <jats:p>The restoration of pseudo-spin symmetry (PSS) along the <jats:inline-formula> <jats:tex-math><?CDATA $ N = 32 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074107_M1.jpg" xlink:type="simple" /> </jats:inline-formula> and N = <jats:inline-formula> <jats:tex-math><?CDATA $ 34 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074107_M2.jpg" xlink:type="simple" /> </jats:inline-formula> isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with the effective Lagrangian PKA1. Taking the proton pseudo-spin partners <jats:inline-formula> <jats:tex-math><?CDATA $ (\pi2s_{1/2},\pi1d_{3/2}) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_074107_M3.jpg" xlink:type="simple" /> </jats:inline-formula> as candidates, the systematic restoration of PSS along both isotonic chains is found from sulphur (S) to nickel (Ni), while an obvious PSS violation from silicon (Si) to sulphur is discovered near the drip lines. The effects of the tensor force components are investigated, introduced naturally by the Fock terms, which can only partially interpret the systematics from calcium to nickel, whereas they fail for the overall trends. Further analysis following the Schrödinger-like equation of the lower component of Dirac spinor shows that contributions from the Hartree terms dominate the overall systematics of the PSS restoration. Such effects can be self-consistently interpreted by the evolution of the proton central density profiles along both isotonic chains. In particular, the PSS violation is found to tightly relate to the dramatic changes from the bubble-like density profiles in silicon to the central-bumped ones in sulphur. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 074107
Expected energy spectrum of cosmic ray protons and helium below 4 PeV measured by LHAASO *
L. Q. Yin; S. S. Zhang; Z. Cao; B. Y. Bi; C. Wang; J. L. Liu; L. L. Ma; M. J. Yang; Tiina Suomijärvi; Y. Zhang; Z. Y. You; Z. Z. Zong
<jats:title>Abstract</jats:title> <jats:p>The Large High Altitude Air Shower Observatory (LHAASO) is a composite cosmic ray observatory consisting of three detector arrays: kilometer square array (KM2A), which includes the electromagnetic detector array and muon detector array, water Cherenkov detector array (WCDA) and wide field-of-view Cherenkov telescope array (WFCTA). One of the main scientific objectives of LHAASO is to precisely measure the cosmic rays energy spectrum of individual components from <jats:inline-formula> <jats:tex-math><?CDATA $ 10^{14} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> eV to <jats:inline-formula> <jats:tex-math><?CDATA $ 10^{18} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075001_M2.jpg" xlink:type="simple" /> </jats:inline-formula> eV. The hybrid observation will be employed by the LHAASO experiment, in which the lateral and longitudinal distributions of extensive air shower can be observed simultaneously. Thus, many kinds of parameters can be used for primary nuclei identification. In this paper, high purity cosmic ray simulation samples of the light nuclei component are obtained using multi-variable analysis. The apertures of 1/4 LHAASO array for pure proton and mixed proton and helium (H&He) samples are <jats:inline-formula> <jats:tex-math><?CDATA $ 900 \rm\ m^{2}Sr $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075001_M3.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ 1800 \rm\ m^{2}Sr $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075001_M4.jpg" xlink:type="simple" /> </jats:inline-formula> , respectively. Prospect of obtaining proton and H&He spectra from 100 TeV to 4 PeV is discussed. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 075001
Lateral distribution of EAS muons measured for the primary cosmic ray energy around 100 TeV *
You-Liang Feng; Yi Zhang; Tian-Lu Chen; Yi-Qing Guo; Hong-Bo Hu; Cheng Liu; Guang-Guang Xin; Yu-Hua Yao; Zhen Wang; 罗布 DANZENGLUOBU; Qi Gao; Mao-Yuan Liu; Shi-Ping Zhao; Bing-Qiang Qiao; Ying-Ying Guo; Hui Cai
<jats:title>Abstract</jats:title> <jats:p>The muonic component of the extensive air showers (EAS) is of great importance for the astroparticle physics. It carries the information about the properties of primary cosmic ray (CR) particles, such as their mass, and electromagnetic and hadronic nature. It provides a sensitive test for the hadronic interaction models, which are inevitable for describing the cascade shower development of cosmic rays in EAS experiments. The YangBaJing Hybrid Array (YBJ-HA) experiment has been in operation since the end of 2016. Surface detectors are used for the measurements of primary energy, angular direction and core position of a shower event, while underground muon detectors are used for measuring the density of muons at various locations. Using the data obtained by the YBJ-HA experiment, this work reports the first measurement of the lateral muon distribution for the primary cosmic ray energy in the 100 TeV region. The punch-through effect is evaluated via MC simulation.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 075002
Non-parametric reconstruction of dark energy and cosmic expansion from the Pantheon compilation of type Ia supernovae *
Hai-Nan Lin; Xin Li; Li Tang
<jats:title>Abstract</jats:title> <jats:p>The equation of state (EoS) of dark energy plays an important role in the evolution of the universe and has attracted considerable interest in the recent years. With the progress in observational technique, a precise constraint on the EoS of dark energy can be obtained. In this study, we reconstruct the EoS of dark energy and cosmic expansion using Gaussian processes (GP) from the most up-to-date Pantheon compilation of type Ia supernovae (SNe Ia), which consists of 1048 finely calibrated SNe Ia. The reconstructed EoS of dark energy has a large uncertainty owing to its dependence on the second-order derivative of the construction. Adding the direct measurements of Hubble parameters <jats:inline-formula> <jats:tex-math><?CDATA $H(z)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075101_M1.jpg" xlink:type="simple" /> </jats:inline-formula> as an additional constraint on the first-order derivative can partially reduce the uncertainty; however, it is still not sufficiently precise to distinguish between the evolving and the constant dark energy. Moreover, the results heavily rely on the prior of the Hubble constant <jats:inline-formula> <jats:tex-math><?CDATA $H_0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075101_M2.jpg" xlink:type="simple" /> </jats:inline-formula>. The <jats:inline-formula> <jats:tex-math><?CDATA $H_0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075101_M3.jpg" xlink:type="simple" /> </jats:inline-formula> value inferred from SNe+ <jats:inline-formula> <jats:tex-math><?CDATA $H(z)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075101_M4.jpg" xlink:type="simple" /> </jats:inline-formula> without prior is <jats:inline-formula> <jats:tex-math><?CDATA $H_0=70.5\pm 0.5~{\rm km~s^{-1}~Mpc^{-1}}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075101_M5.jpg" xlink:type="simple" /> </jats:inline-formula>. Moreover, the matter density <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_M$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075101_M6.jpg" xlink:type="simple" /> </jats:inline-formula> has a non-negligible effect on the reconstruction of dark energy. Therefore, more accurate determinations on <jats:inline-formula> <jats:tex-math><?CDATA $H_0$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075101_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $\Omega_M$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_7_075101_M8.jpg" xlink:type="simple" /> </jats:inline-formula> are required to tightly constrain the EoS of dark energy. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 075101
The prospects of using gravitational waves for constraining the anisotropy of the Universe *
Zhi-Chao Zhao; Hai-Nan Lin; Zhe Chang
<jats:title>Abstract</jats:title> <jats:p>The observation of GW150914 gave a new independent measurement of the luminosity distance of a gravitational wave event. In this paper, we constrain the anisotropy of the Universe by using gravitational wave events. We simulate hundreds of events of binary neutron star merger that may be observed by the Einstein Telescope. Full simulation of the production process of gravitational wave data is employed. We find that 200 binary neutron star merging events with the redshift in (0,1) observed by the Einstein Telescope may constrain the anisotropy with an accuracy comparable to that from the Union2.1 supernovae. This result shows that gravitational waves can be a powerful tool for investigating cosmological anisotropy.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 075102
Primordial perturbations and non-gaussianities in Hořava-Lifshitz gravity *
Xian Gao
<jats:title>Abstract</jats:title> <jats:p>We investigate primordial perturbations and non-gaussianities in the Hořava-Lifshitz theory of gravitation. In the UV limit, the scalar perturbation in the Hořava theory is naturally scale-invariant, ignoring the details of the expansion of the Universe. One may thus relax the exponential inflation and the slow-roll conditions for the inflaton field. As a result, it is possible that the primordial non-gaussianities, which are " slow-roll suppressed” in the standard scenarios, become large. We calculate the non-gaussianities from the bispectrum of the perturbation and find that the equilateral-type non-gaussianity is of the order of unity, while the local-type non-gaussianity remains small, as in the usual single-field slow-roll inflation model in general relativity. Our result is a new constraint on Hořava-Lifshitz gravity.</jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 075103
Study of Monte Carlo event generators for proton-proton collisions at LHC energies in the forward region *
Alexandru Cătălin ENE; Alexandru JIPA; Lavinia-Elena GIUBEGA
<jats:title>Abstract</jats:title> <jats:p>In this paper we present a comparative study between PYTHIA, EPOS, QGSJET, and SIBYLL generators. The global event observables considered are the charged energy flow, charged particle distributions, charged hadron production ratios and <jats:italic>V</jats:italic> <jats:sup>0</jats:sup> ratios. The study is performed in the LHCb and TOTEM fiducial phase spaces on minimum bias simulated data samples for <jats:italic>pp</jats:italic> collisions at <jats:inline-formula> <jats:tex-math><?CDATA $\sqrt{s}$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083001_M1.jpg" xlink:type="simple" /> </jats:inline-formula> = 7 TeV , using the reference measurements from these experiments. In the majority of cases, the measurements are within a band defined by the most extreme predictions. The observed differences between the predictions and the measurements seem to be, in most part, caused by extrapolation from the central pseudorapidity region (|<jats:italic>η</jats:italic>| <jats:inline-formula> <jats:tex-math><?CDATA $\leqslant$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083001_M1-1.jpg" xlink:type="simple" /> </jats:inline-formula> 2.5), in which the generators were mainly tuned. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 083001
Evidence for the decays of and *
M. Ablikim; M. N. Achasov; S. Ahmed; M. Albrecht; M. Alekseev; A. Amoroso; F. F. An; Q. An; Y. Bai; O. Bakina; R. Baldini Ferroli; Y. Ban; K. Begzsuren; D. W. Bennett; J. V. Bennett; N. Berger; M. Bertani; D. Bettoni; F. Bianchi; I. Boyko; R. A. Briere; H. Cai; X. Cai; O. Cakir; A. Calcaterra; G. F. Cao; S. A. Cetin; J. Chai; J. F. Chang; W. L. Chang; G. Chelkov; G. Chen; H. S. Chen; J. C. Chen; M. L. Chen; P. L. Chen; S. J. Chen; Y. B. Chen; W. Cheng; G. Cibinetto; F. Cossio; H. L. Dai; J. P. Dai; A. Dbeyssi; D. Dedovich; Z. Y. Deng; A. Denig; I. Denysenko; M. Destefanis; F. De Mori; Y. Ding; C. Dong; J. Dong; L. Y. Dong; M. Y. Dong; Z. L. Dou; S. X. Du; P. F. Duan; J. Z. Fan; J. Fang; S. S. Fang; Y. Fang; R. Farinelli; L. Fava; S. Fegan; F. Feldbauer; G. Felici; C. Q. Feng; M. Fritsch; C. D. Fu; Y. Fu; Q. Gao; X. L. Gao; Y. Gao; Y. G. Gao; Z. Gao; B. Garillon; I. Garzia; A. Gilman; K. Goetzen; L. Gong; W. X. Gong; W. Gradl; M. Greco; L. M. Gu; M. H. Gu; Y. T. Gu; A. Q. Guo; L. B. Guo; R. P. Guo; Y. P. Guo; A. Guskov; Z. Haddadi; S. Han; X. Q. Hao; F. A. Harris; K. L. He; F. H. Heinsius; T. Held; Y. K. Heng; Z. L. Hou; H. M. Hu; J. F. Hu; T. Hu; Y. Hu; G. S. Huang; J. S. Huang; X. T. Huang; X. Z. Huang; Z. L. Huang; T. Hussain; N. Hü sken; W. Ikegami Andersson; M Irshad; Q. Ji; Q. P. Ji; X. B. Ji; X. L. Ji; X. S. Jiang; X. Y. Jiang; J. B. Jiao; Z. Jiao; D. P. Jin; S. Jin; Y. Jin; T. Johansson; A. Julin; N. Kalantar-Nayestanaki; X. S. Kang; M. Kavatsyuk; B. C. Ke; I. K. Keshk; T. Khan; A. Khoukaz; P. Kiese; R. Kiuchi; R. Kliemt; L. Koch; O. B. Kolcu; B. Kopf; M. Kornicer; M. Kuemmel; M. Kuessner; A. Kupsc; M. Kurth; W. Kühn; J. S. Lange; P. Larin; L. Lavezzi; S. Leiber; H. Leithoff; C. Li; Cheng Li; D. M. Li; F. Li; F. Y. Li; G. Li; H. B. Li; H. J. Li; J. C. Li; J. W. Li; Ke Li; Lei Li; P. L. Li; P. R. Li; Q. Y. Li; T. Li; W. D. Li; W. G. Li; X. L. Li; X. N. Li; X. Q. Li; Z. B. Li; H. Liang; Y. F. Liang; Y. T. Liang; G. R. Liao; L. Z. Liao; J. Libby; C. X. Lin; D. X. Lin; B. Liu; B. J. Liu; C. X. Liu; D. Liu; D. Y. Liu; F. H. Liu; Fang Liu; Feng Liu; H. B. Liu; H. L Liu; H. M. Liu; Huanhuan Liu; Huihui Liu; J. B. Liu; J. Y. Liu; K. Liu; K. Y. Liu; Ke Liu; Q. Liu; S. B. Liu; X. Liu; Y. B. Liu; Z. A. Liu; Zhiqing Liu; Y. F. Long; X. C. Lou; H. J. Lu; J. D. Lu; J. G. Lu; Y. Lu; Y. P. Lu; C. L. Luo; M. X. Luo; T. Luo; X. L. Luo; S. Lusso; X. R. Lyu; F. C. Ma; H. L. Ma; L. L. Ma; M. M. Ma; Q. M. Ma; X. N. Ma; X. X. Ma; X. Y. Ma; Y. M. Ma; F. E. Maas; M. Maggiora; S. Maldaner; Q. A. Malik; A. Mangoni; Y. J. Mao; Z. P. Mao; S. Marcello; Z. X. Meng; J. G. Messchendorp; G. Mezzadri; J. Min; T. J. Min; R. E. Mitchell; X. H. Mo; Y. J. Mo; C. Morales Morales; N. Yu. Muchnoi; H. Muramatsu; A. Mustafa; S. Nakhoul; Y. Nefedov; F. Nerling; I. B. Nikolaev; Z. Ning; S. Nisar; S. L. Niu; S. L. Olsen; Q. Ouyang; S. Pacetti; Y. Pan; M. Papenbrock; P. Patteri; M. Pelizaeus; J. Pellegrino; H. P. Peng; K. Peters; J. Pettersson; J. L. Ping; R. G. Ping; A. Pitka; R. Poling; V. Prasad; H. R. Qi; M. Qi; T. Y. Qi; S. Qian; C. F. Qiao; N. Qin; X. S. Qin; Z. H. Qin; J. F. Qiu; S. Q. Qu; K. H. Rashid; C. F. Redmer; M. Richter; M. Ripka; A. Rivetti; M. Rolo; G. Rong; Ch. Rosner; M. Rump; A. Sarantsev; M. Savrié; K. Schoenning; W. Shan; X. Y. Shan; M. Shao; C. P. Shen; P. X. Shen; X. Y. Shen; H. Y. Sheng; X. Shi; J. J. Song; W. M. Song; X. Y. Song; S. Sosio; C. Sowa; S. Spataro; G. X. Sun; J. F. Sun; L. Sun; S. S. Sun; X. H. Sun; Y. J. Sun; Y. K Sun; Y. Z. Sun; Z. J. Sun; Z. T. Sun; Y. T Tan; C. J. Tang; G. Y. Tang; X. Tang; I. Tapan; M. Tiemens; B. Tsednee; I. Uman; B. Wang; B. L. Wang; C. W. Wang; D. Y. Wang; Dan Wang; K. Wang; L. L. Wang; L. S. Wang; M. Wang; Meng Wang; P. Wang; P. L. Wang; W. P. Wang; X. F. Wang; Y. Wang; Y. F. Wang; Z. Wang; Z. G. Wang; Z. Y. Wang; Zongyuan Wang; T. Weber; D. H. Wei; P. Weidenkaff; S. P. Wen; U. Wiedner; M. Wolke; L. H. Wu; L. J. Wu; Z. Wu; L. Xia; X. Xia; Y. Xia; D. Xiao; Y. J. Xiao; Z. J. Xiao; Y. G. Xie; Y. H. Xie; X. A. Xiong; Q. L. Xiu; G. F. Xu; J. J. Xu; L. Xu; Q. J. Xu; Q. N. Xu; X. P. Xu; F. Yan; L. Yan; W. B. Yan; W. C. Yan; Y. H. Yan; H. J. Yang; H. X. Yang; L. Yang; R. X. Yang; S. L. Yang; Y. H. Yang; Y. X. Yang; Yifan Yang; Z. Q. Yang; M. Ye; M. H. Ye; J. H. Yin; Z. Y. You; B. X. Yu; C. X. Yu; J. S. Yu; C. Z. Yuan; Y. Yuan; A. Yuncu; A. A. Zafar; Y. Zeng; B. X. Zhang; B. Y. Zhang; C. C. Zhang; D. H. Zhang; H. H. Zhang; H. Y. Zhang; J. Zhang; J. L. Zhang; J. Q. Zhang; J. W. Zhang; J. Y. Zhang; J. Z. Zhang; K. Zhang; L. Zhang; S. F. Zhang; T. J. Zhang; X. Y. Zhang; Y. Zhang; Y. H. Zhang; Y. T. Zhang; Yang Zhang; Yao Zhang; Yu Zhang; Z. H. Zhang; Z. P. Zhang; Z. Y. Zhang; G. Zhao; J. W. Zhao; J. Y. Zhao; J. Z. Zhao; Lei Zhao; Ling Zhao; M. G. Zhao; Q. Zhao; S. J. Zhao; T. C. Zhao; Y. B. Zhao; Z. G. Zhao; A. Zhemchugov; B. Zheng; J. P. Zheng; W. J. Zheng; Y. H. Zheng; B. Zhong; L. Zhou; Q. Zhou; X. Zhou; X. K. Zhou; X. R. Zhou; X. Y. Zhou; Xiaoyu Zhou; Xu Zhou; A. N. Zhu; J. Zhu; J. Zhu; K. Zhu; K. J. Zhu; S. Zhu; S. H. Zhu; X. L. Zhu; Y. C. Zhu; Y. S. Zhu; Z. A. Zhu; J. Zhuang; B. S. Zou; J. H. Zou
<jats:title>Abstract</jats:title> <jats:p>We study the hadronic decays of <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{c}^{+} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M3.jpg" xlink:type="simple" /> </jats:inline-formula> to the final states <jats:inline-formula> <jats:tex-math><?CDATA $ \Sigma^{+}\eta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M4.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Sigma^+\eta^\prime $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M5.jpg" xlink:type="simple" /> </jats:inline-formula>, using an <jats:inline-formula> <jats:tex-math><?CDATA $ e^+e^- $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M6.jpg" xlink:type="simple" /> </jats:inline-formula> annihilation data sample of 567 pb<jats:sup>-1</jats:sup> taken at a center-of-mass energy of 4.6 GeV with the BESIII detector at the BEPCII collider. We find evidence for the decays <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{c}^{+}\rightarrow\Sigma^{+}\eta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M7.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Sigma^+\eta^\prime $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M8.jpg" xlink:type="simple" /> </jats:inline-formula> with statistical significance of <jats:inline-formula> <jats:tex-math><?CDATA $ 2.5\sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M9.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ 3.2\sigma $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M10.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively. Normalizing to the reference decays <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_c^+\to\Sigma^+\pi^0 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M11.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \Sigma^+\omega $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M12.jpg" xlink:type="simple" /> </jats:inline-formula>, we obtain the ratios of the branching fractions <jats:inline-formula> <jats:tex-math><?CDATA $ \displaystyle\frac{{\mathcal B}(\Lambda_c^+\to\Sigma^+\eta)}{{\mathcal B}(\Lambda_c^+\to\Sigma^+\pi^0)} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M13.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \displaystyle\frac{{\mathcal B}(\Lambda_c^+\to\Sigma^+\eta^\prime)}{{\mathcal B}(\Lambda_c^+\to\Sigma^+\omega)} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M14.jpg" xlink:type="simple" /> </jats:inline-formula> to be <jats:inline-formula> <jats:tex-math><?CDATA $ 0.35 \pm 0.16 \pm 0.02 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M15.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ 0.86 \pm 0.34 \pm 0.04 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M16.jpg" xlink:type="simple" /> </jats:inline-formula>, respectively. The upper limits at the 90% confidence level are set to be <jats:inline-formula> <jats:tex-math><?CDATA $ \displaystyle\frac{{\mathcal B}(\Lambda_c^+\to\Sigma^+\eta)}{{\mathcal B}(\Lambda_c^+\to\Sigma^+\pi^0)} \lt 0.58 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M17.jpg" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math><?CDATA $ \displaystyle\frac{{\mathcal B}(\Lambda_c^+\to\Sigma^+\eta^\prime)}{{\mathcal B}(\Lambda_c^+\to\Sigma^+\omega)} \lt 1.2 $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M18.jpg" xlink:type="simple" /> </jats:inline-formula>. Using BESIII measurements of the branching fractions of the reference decays, we determine <jats:inline-formula> <jats:tex-math><?CDATA $ \mathcal{B}({\Lambda_{c}^{+}\rightarrow\Sigma^{+}\eta}) = (0.41\pm0.19\pm0.05) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M19.jpg" xlink:type="simple" /> </jats:inline-formula>% (<0.68%) and <jats:inline-formula> <jats:tex-math><?CDATA $ \mathcal{B}({\Lambda_{c}^{+}\rightarrow\Sigma^{+}\eta'}) = (1.34\pm0.53\pm0.19) $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M20.jpg" xlink:type="simple" /> </jats:inline-formula>% (<1.9%). Here, the first uncertainties are statistical and the second systematic. The obtained branching fraction of <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_c^+\to\Sigma^+\eta $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M21.jpg" xlink:type="simple" /> </jats:inline-formula> is consistent with the previous measurement, and the branching fraction of <jats:inline-formula> <jats:tex-math><?CDATA $ \Lambda_{c}^{+}\rightarrow\Sigma^{+}\eta^{\prime} $?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cpc_43_8_083002_M22.jpg" xlink:type="simple" /> </jats:inline-formula> is measured for the first time. </jats:p>
Palabras clave: Astronomy and Astrophysics; Instrumentation; Nuclear and High Energy Physics.
Pp. 083002