Catálogo de publicaciones - libros

Compartir en
redes sociales


Housing Contemporary Ireland: Policy, Society and Shelter

Michelle Norris ; Declan Redmond (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-5673-4

ISBN electrónico

978-1-4020-5674-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media B.V. 2007

Tabla de contenidos

Setting the Scene: Transformations in Irish Housing

Declan Redmond; Michelle Norris

Air pollution has arisen from both natural (meteoric, terrestrial, marine, volcanic, erosion and surface winds, forest fires, biogenic) and anthropogenic (coal and fuel combustion, industry, automobile, agriculture) sources. The steady global increase of trace element concentrations in the atmosphere has been observed and monitored in some countries for over 30 years. The majority of trace element emitters have been located in the northern hemisphere (mainly between 40–55† N). Buat-Ménard (1984) calculated that emissions of trace elements in the Northern Hemisphere are several times higher than in the Southern Hemisphere and are about 80% and 30%, respectively of anthropogenic origin. However, at the global scale, the natural emissions of trace elements cannot be neglected because large amounts of dusts containing trace elements come from natural sources. The estimated principal trace elements emissions for natural sources are as follow: 50% of Cr, Mn, and V, and >20% of Cu, Mo, Ni, Pb, Sb and Zn. Volcanic activities may contribute over 20% of the atmospheric Cd, Hg, As, Cr, Cu, Ni, Pb, and Sb. Sea salt aerosols may also contribute about 10% of total trace element emissions to the atmosphere (Allen et al. 2001). Differentiating natural and anthropogenic sources of metals is not easy and some methods for monitoring various sources of metal pollution have been discussed (Dias and Edwards 2003).

I - Introduction | Pp. 1-20

The Housing Market and Owner Occupation in Ireland

Cathal O'Connell

Air pollution has arisen from both natural (meteoric, terrestrial, marine, volcanic, erosion and surface winds, forest fires, biogenic) and anthropogenic (coal and fuel combustion, industry, automobile, agriculture) sources. The steady global increase of trace element concentrations in the atmosphere has been observed and monitored in some countries for over 30 years. The majority of trace element emitters have been located in the northern hemisphere (mainly between 40–55† N). Buat-Ménard (1984) calculated that emissions of trace elements in the Northern Hemisphere are several times higher than in the Southern Hemisphere and are about 80% and 30%, respectively of anthropogenic origin. However, at the global scale, the natural emissions of trace elements cannot be neglected because large amounts of dusts containing trace elements come from natural sources. The estimated principal trace elements emissions for natural sources are as follow: 50% of Cr, Mn, and V, and >20% of Cu, Mo, Ni, Pb, Sb and Zn. Volcanic activities may contribute over 20% of the atmospheric Cd, Hg, As, Cr, Cu, Ni, Pb, and Sb. Sea salt aerosols may also contribute about 10% of total trace element emissions to the atmosphere (Allen et al. 2001). Differentiating natural and anthropogenic sources of metals is not easy and some methods for monitoring various sources of metal pollution have been discussed (Dias and Edwards 2003).

II - Owner Occupation and the Housing Market | Pp. 21-43

Access Denied? The Challenge of Affordability for Sustainable Access to Housing

Dáithí Downey

Air pollution has arisen from both natural (meteoric, terrestrial, marine, volcanic, erosion and surface winds, forest fires, biogenic) and anthropogenic (coal and fuel combustion, industry, automobile, agriculture) sources. The steady global increase of trace element concentrations in the atmosphere has been observed and monitored in some countries for over 30 years. The majority of trace element emitters have been located in the northern hemisphere (mainly between 40–55† N). Buat-Ménard (1984) calculated that emissions of trace elements in the Northern Hemisphere are several times higher than in the Southern Hemisphere and are about 80% and 30%, respectively of anthropogenic origin. However, at the global scale, the natural emissions of trace elements cannot be neglected because large amounts of dusts containing trace elements come from natural sources. The estimated principal trace elements emissions for natural sources are as follow: 50% of Cr, Mn, and V, and >20% of Cu, Mo, Ni, Pb, Sb and Zn. Volcanic activities may contribute over 20% of the atmospheric Cd, Hg, As, Cr, Cu, Ni, Pb, and Sb. Sea salt aerosols may also contribute about 10% of total trace element emissions to the atmosphere (Allen et al. 2001). Differentiating natural and anthropogenic sources of metals is not easy and some methods for monitoring various sources of metal pollution have been discussed (Dias and Edwards 2003).

II - Owner Occupation and the Housing Market | Pp. 44-68

Housing Expenditures, Housing Poverty and Housing Wealth: Irish Home Owners Brian Nolan In Comparative Context

Tony Fahey; Brian Nolan

Air pollution has arisen from both natural (meteoric, terrestrial, marine, volcanic, erosion and surface winds, forest fires, biogenic) and anthropogenic (coal and fuel combustion, industry, automobile, agriculture) sources. The steady global increase of trace element concentrations in the atmosphere has been observed and monitored in some countries for over 30 years. The majority of trace element emitters have been located in the northern hemisphere (mainly between 40–55† N). Buat-Ménard (1984) calculated that emissions of trace elements in the Northern Hemisphere are several times higher than in the Southern Hemisphere and are about 80% and 30%, respectively of anthropogenic origin. However, at the global scale, the natural emissions of trace elements cannot be neglected because large amounts of dusts containing trace elements come from natural sources. The estimated principal trace elements emissions for natural sources are as follow: 50% of Cr, Mn, and V, and >20% of Cu, Mo, Ni, Pb, Sb and Zn. Volcanic activities may contribute over 20% of the atmospheric Cd, Hg, As, Cr, Cu, Ni, Pb, and Sb. Sea salt aerosols may also contribute about 10% of total trace element emissions to the atmosphere (Allen et al. 2001). Differentiating natural and anthropogenic sources of metals is not easy and some methods for monitoring various sources of metal pollution have been discussed (Dias and Edwards 2003).

II - Owner Occupation and the Housing Market | Pp. 69-99

The Private Rented Sector

Yvonne Galligan

Air pollution has arisen from both natural (meteoric, terrestrial, marine, volcanic, erosion and surface winds, forest fires, biogenic) and anthropogenic (coal and fuel combustion, industry, automobile, agriculture) sources. The steady global increase of trace element concentrations in the atmosphere has been observed and monitored in some countries for over 30 years. The majority of trace element emitters have been located in the northern hemisphere (mainly between 40–55† N). Buat-Ménard (1984) calculated that emissions of trace elements in the Northern Hemisphere are several times higher than in the Southern Hemisphere and are about 80% and 30%, respectively of anthropogenic origin. However, at the global scale, the natural emissions of trace elements cannot be neglected because large amounts of dusts containing trace elements come from natural sources. The estimated principal trace elements emissions for natural sources are as follow: 50% of Cr, Mn, and V, and >20% of Cu, Mo, Ni, Pb, Sb and Zn. Volcanic activities may contribute over 20% of the atmospheric Cd, Hg, As, Cr, Cu, Ni, Pb, and Sb. Sea salt aerosols may also contribute about 10% of total trace element emissions to the atmosphere (Allen et al. 2001). Differentiating natural and anthropogenic sources of metals is not easy and some methods for monitoring various sources of metal pollution have been discussed (Dias and Edwards 2003).

III - The Private Rented Sector | Pp. 100-118

Uneven Development and the Private Rental Market: Problems and Prospectsfor Low-Income Households

Michael Punch

Air pollution has arisen from both natural (meteoric, terrestrial, marine, volcanic, erosion and surface winds, forest fires, biogenic) and anthropogenic (coal and fuel combustion, industry, automobile, agriculture) sources. The steady global increase of trace element concentrations in the atmosphere has been observed and monitored in some countries for over 30 years. The majority of trace element emitters have been located in the northern hemisphere (mainly between 40–55† N). Buat-Ménard (1984) calculated that emissions of trace elements in the Northern Hemisphere are several times higher than in the Southern Hemisphere and are about 80% and 30%, respectively of anthropogenic origin. However, at the global scale, the natural emissions of trace elements cannot be neglected because large amounts of dusts containing trace elements come from natural sources. The estimated principal trace elements emissions for natural sources are as follow: 50% of Cr, Mn, and V, and >20% of Cu, Mo, Ni, Pb, Sb and Zn. Volcanic activities may contribute over 20% of the atmospheric Cd, Hg, As, Cr, Cu, Ni, Pb, and Sb. Sea salt aerosols may also contribute about 10% of total trace element emissions to the atmosphere (Allen et al. 2001). Differentiating natural and anthropogenic sources of metals is not easy and some methods for monitoring various sources of metal pollution have been discussed (Dias and Edwards 2003).

III - The Private Rented Sector | Pp. 119-143

Urban Renewal and the Private Rented Sector

Andrew MacLaran; Brendan Williams

Air pollution has arisen from both natural (meteoric, terrestrial, marine, volcanic, erosion and surface winds, forest fires, biogenic) and anthropogenic (coal and fuel combustion, industry, automobile, agriculture) sources. The steady global increase of trace element concentrations in the atmosphere has been observed and monitored in some countries for over 30 years. The majority of trace element emitters have been located in the northern hemisphere (mainly between 40–55† N). Buat-Ménard (1984) calculated that emissions of trace elements in the Northern Hemisphere are several times higher than in the Southern Hemisphere and are about 80% and 30%, respectively of anthropogenic origin. However, at the global scale, the natural emissions of trace elements cannot be neglected because large amounts of dusts containing trace elements come from natural sources. The estimated principal trace elements emissions for natural sources are as follow: 50% of Cr, Mn, and V, and >20% of Cu, Mo, Ni, Pb, Sb and Zn. Volcanic activities may contribute over 20% of the atmospheric Cd, Hg, As, Cr, Cu, Ni, Pb, and Sb. Sea salt aerosols may also contribute about 10% of total trace element emissions to the atmosphere (Allen et al. 2001). Differentiating natural and anthropogenic sources of metals is not easy and some methods for monitoring various sources of metal pollution have been discussed (Dias and Edwards 2003).

III - The Private Rented Sector | Pp. 144-159

Social Housing

Michelle Norris

Air pollution has arisen from both natural (meteoric, terrestrial, marine, volcanic, erosion and surface winds, forest fires, biogenic) and anthropogenic (coal and fuel combustion, industry, automobile, agriculture) sources. The steady global increase of trace element concentrations in the atmosphere has been observed and monitored in some countries for over 30 years. The majority of trace element emitters have been located in the northern hemisphere (mainly between 40–55† N). Buat-Ménard (1984) calculated that emissions of trace elements in the Northern Hemisphere are several times higher than in the Southern Hemisphere and are about 80% and 30%, respectively of anthropogenic origin. However, at the global scale, the natural emissions of trace elements cannot be neglected because large amounts of dusts containing trace elements come from natural sources. The estimated principal trace elements emissions for natural sources are as follow: 50% of Cr, Mn, and V, and >20% of Cu, Mo, Ni, Pb, Sb and Zn. Volcanic activities may contribute over 20% of the atmospheric Cd, Hg, As, Cr, Cu, Ni, Pb, and Sb. Sea salt aerosols may also contribute about 10% of total trace element emissions to the atmosphere (Allen et al. 2001). Differentiating natural and anthropogenic sources of metals is not easy and some methods for monitoring various sources of metal pollution have been discussed (Dias and Edwards 2003).

IV - Social Housing | Pp. 160-182

Reforming Local Authority Housing Management: The Case of Tenant Participation in Estate Management

Declan Redmond; Michelle Norris

Air pollution has arisen from both natural (meteoric, terrestrial, marine, volcanic, erosion and surface winds, forest fires, biogenic) and anthropogenic (coal and fuel combustion, industry, automobile, agriculture) sources. The steady global increase of trace element concentrations in the atmosphere has been observed and monitored in some countries for over 30 years. The majority of trace element emitters have been located in the northern hemisphere (mainly between 40–55† N). Buat-Ménard (1984) calculated that emissions of trace elements in the Northern Hemisphere are several times higher than in the Southern Hemisphere and are about 80% and 30%, respectively of anthropogenic origin. However, at the global scale, the natural emissions of trace elements cannot be neglected because large amounts of dusts containing trace elements come from natural sources. The estimated principal trace elements emissions for natural sources are as follow: 50% of Cr, Mn, and V, and >20% of Cu, Mo, Ni, Pb, Sb and Zn. Volcanic activities may contribute over 20% of the atmospheric Cd, Hg, As, Cr, Cu, Ni, Pb, and Sb. Sea salt aerosols may also contribute about 10% of total trace element emissions to the atmosphere (Allen et al. 2001). Differentiating natural and anthropogenic sources of metals is not easy and some methods for monitoring various sources of metal pollution have been discussed (Dias and Edwards 2003).

IV - Social Housing | Pp. 183-204

The Changing Nature of the Housing Association Sector

Simon Brooke; Vanda Clayton

Air pollution has arisen from both natural (meteoric, terrestrial, marine, volcanic, erosion and surface winds, forest fires, biogenic) and anthropogenic (coal and fuel combustion, industry, automobile, agriculture) sources. The steady global increase of trace element concentrations in the atmosphere has been observed and monitored in some countries for over 30 years. The majority of trace element emitters have been located in the northern hemisphere (mainly between 40–55† N). Buat-Ménard (1984) calculated that emissions of trace elements in the Northern Hemisphere are several times higher than in the Southern Hemisphere and are about 80% and 30%, respectively of anthropogenic origin. However, at the global scale, the natural emissions of trace elements cannot be neglected because large amounts of dusts containing trace elements come from natural sources. The estimated principal trace elements emissions for natural sources are as follow: 50% of Cr, Mn, and V, and >20% of Cu, Mo, Ni, Pb, Sb and Zn. Volcanic activities may contribute over 20% of the atmospheric Cd, Hg, As, Cr, Cu, Ni, Pb, and Sb. Sea salt aerosols may also contribute about 10% of total trace element emissions to the atmosphere (Allen et al. 2001). Differentiating natural and anthropogenic sources of metals is not easy and some methods for monitoring various sources of metal pollution have been discussed (Dias and Edwards 2003).

IV - Social Housing | Pp. 205-223