Catálogo de publicaciones - libros

Compartir en
redes sociales


Rice Functional Genomics: Challenges, Progress and Prospects

Narayana M. Upadhyaya

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-48903-2

ISBN electrónico

978-0-387-48914-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, LLC 2007

Tabla de contenidos

Gene Targeting by Homologous Recombination for Rice Functional Genomics

Shigeru Iida; Yasuyo Johzuka-Hisatomi; Rie Terada

The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.

Pp. 273-289

RNA Silencing and Its Application in Functional Genomics

Shaun J. Curtin; Ming-Bo Wang; John M. Watson; Paul Roffey; Chris L. Blanchard; Peter M. Waterhouse

The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.

Pp. 291-332

Activation Tagging Systems in Rice

Alexander A.T. Johnson; Su-May Yu; Mark Tester

The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.

Pp. 333-353

Informatics Resources for Rice Functional Genomics

Baltazar A. Antonio; C. Robin Buell; Yukiko Yamazaki; Immanuel Yap; Christophe Perin; Richard Bruskiewich

The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.

Pp. 355-394

The Oryza Map Alignment Project (OMAP): A New Resource for Comparative Genome Studies within Oryza

Rod A. Wing; HyeRan Kim; Jose Luis Goicoechea; Yeisoo Yu; Dave Kudrna; Andrea Zuccolo; Jetty Siva S. Ammiraju; Meizhong Luo; Will Nelson; Jianxin Ma; Phillip SanMiguel; Bonnie Hurwitz; Doreen Ware; Darshan Brar; David Mackill; Cari Soderlund; Lincoln Stein; Scott Jackson

The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.

Pp. 395-409

Application of Functional Genomics Tools for Crop Improvement

Motoyuki Ashikari; Makoto Matsuoka; Masahiro Yano

The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.

Pp. 411-427

From Rice to Other Cereals: Comparative Genomics

Richard Cooke; Benoit Piègu; Olivier Panaud; Romain Guyot; Jèrome Salse; Catherine Feuillet; Michel Delseny

The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of efficient and effective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in flowing water. To choose an appropriate remediation strategy, knowledge of the contaminant release source and time release history becomes pertinent. With more and more contamination sites being detected nowadays, it is almost impossible to perform exhaustive drilling, testing, and chemical fingerprint analysis every time, especially in the case of pollution being generated by highway construction and repair materials. Moreover, most of the time, chemical finger printing, state and federal agency records, and private parties' history records of handling hazardous substances are not sufficient to allow a unique solution for the timing of source releases. The purpose of this chapter is to present and review mathematical methods that have been developed during the past 15 years to perform hydrologic inversion and specifically to identify the contaminant source location and time-release history.

Pp. 429-479