Catálogo de publicaciones - libros
Computer Vision: ECCV 2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28-31, 2002 Proceedings, Part I
Anders Heyden ; Gunnar Sparr ; Mads Nielsen ; Peter Johansen (eds.)
En conferencia: 7º European Conference on Computer Vision (ECCV) . Copenhagen, Denmark . May 28, 2002 - May 31, 2002
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Image Processing and Computer Vision; Computer Graphics; Pattern Recognition; Artificial Intelligence
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2002 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-43745-1
ISBN electrónico
978-3-540-47969-7
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2002
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2002
Cobertura temática
Tabla de contenidos
Hyperdynamics Importance Sampling
Cristian Sminchisescu; Bill Triggs
Sequential random sampling (‘Markov Chain Monte-Carlo’) is a popular strategy for many vision problems involving multimodal distributions over high-dimensional parameter spaces. It applies both to (where one wants to sample points according to their ‘importance’ for some calculation, but otherwise fairly) and to (where one wants to find good minima, or at least good starting points for local minimization, regardless of fairness). Unfortunately, most sequential samplers are very prone to becoming ‘trapped’ for long periods in unrepresentative local minima, which leads to biased or highly variable estimates. We present a general strategy for reducing MCMC trapping that generalizes Voter’s ‘hyperdynamic sampling’ from computational chemistry. The local gradient and curvature of the input distribution are used to construct an adaptive importance sampler that focuses samples on low cost negative curvature regions likely to contain ‘transition states’ — codimension-1 saddle points representing ‘mountain passes’ connecting adjacent cost basins. This substantially accelerates inter-basin transition rates while still preserving correct relative transition probabilities. Experimental tests on the difficult problem of 3D articulated human pose estimation from monocular images show significantly enhanced minimum exploration.
- Visual Motion | Pp. 769-783
Implicit Probabilistic Models of Human Motion for Synthesis and Tracking
Hedvig Sidenbladh; Michael J. Black; Leonid Sigal
This paper addresses the problem of probabilistically modeling 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an . These methods replace the problem of the probability of a texture pattern with that of the training data for similar instances of that pattern. We extend this idea to temporal data representing 3D human motion with a large database of example motions. To make the method useful in practice, we must address the problem of efficient search in a large training set; efficiency is particularly important for tracking. Towards that end, we learn a low dimensional linear model of human motion that is used to structure the example motion database into a binary tree. An approximate probabilistic tree search method exploits the coefficients of this low-dimensional representation and runs in sub-linear time. This probabilistic tree search returns a particular human motion with probability approximating the true distribution of human motions in the database. This sampling method is suitable for use with particle filtering techniques and is applied to articulated 3D tracking of humans within a Bayesian framework. Successful tracking results are presented, along with examples of synthesizing human motion using the model.
- Visual Motion | Pp. 784-800
Space-Time Tracking
Lorenzo Torresani; Christoph Bregler
We propose a new tracking technique that is able to capture non-rigid motion by exploiting a space-time rank constraint. Most tracking methods use a prior model in order to deal with challenging local features. The model usually has to be trained on carefully hand-labeled example data before the tracking algorithm can be used. Our new model-free tracking technique can overcome such limitations. This can be achieved in redefining the problem. Instead of first training a model and then tracking the model parameters, we are able to derive trajectory constraints first, and then estimate the model. This reduces the search space significantly and allows for a better feature disambiguation that would not be possible with traditional trackers. We demonstrate that sampling in the trajectory space, instead of in the space of shape configurations, allows us to track challenging footage without use of prior models.
- Visual Motion | Pp. 801-812