Catálogo de publicaciones - libros

Compartir en
redes sociales


Computer Vision: ECCV 2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28-31, 2002 Proceedings, Part I

Anders Heyden ; Gunnar Sparr ; Mads Nielsen ; Peter Johansen (eds.)

En conferencia: 7º European Conference on Computer Vision (ECCV) . Copenhagen, Denmark . May 28, 2002 - May 31, 2002

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Image Processing and Computer Vision; Computer Graphics; Pattern Recognition; Artificial Intelligence

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2002 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-43745-1

ISBN electrónico

978-3-540-47969-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2002

Tabla de contenidos

Hyperdynamics Importance Sampling

Cristian Sminchisescu; Bill Triggs

Sequential random sampling (‘Markov Chain Monte-Carlo’) is a popular strategy for many vision problems involving multimodal distributions over high-dimensional parameter spaces. It applies both to (where one wants to sample points according to their ‘importance’ for some calculation, but otherwise fairly) and to (where one wants to find good minima, or at least good starting points for local minimization, regardless of fairness). Unfortunately, most sequential samplers are very prone to becoming ‘trapped’ for long periods in unrepresentative local minima, which leads to biased or highly variable estimates. We present a general strategy for reducing MCMC trapping that generalizes Voter’s ‘hyperdynamic sampling’ from computational chemistry. The local gradient and curvature of the input distribution are used to construct an adaptive importance sampler that focuses samples on low cost negative curvature regions likely to contain ‘transition states’ — codimension-1 saddle points representing ‘mountain passes’ connecting adjacent cost basins. This substantially accelerates inter-basin transition rates while still preserving correct relative transition probabilities. Experimental tests on the difficult problem of 3D articulated human pose estimation from monocular images show significantly enhanced minimum exploration.

- Visual Motion | Pp. 769-783

Implicit Probabilistic Models of Human Motion for Synthesis and Tracking

Hedvig Sidenbladh; Michael J. Black; Leonid Sigal

This paper addresses the problem of probabilistically modeling 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an . These methods replace the problem of the probability of a texture pattern with that of the training data for similar instances of that pattern. We extend this idea to temporal data representing 3D human motion with a large database of example motions. To make the method useful in practice, we must address the problem of efficient search in a large training set; efficiency is particularly important for tracking. Towards that end, we learn a low dimensional linear model of human motion that is used to structure the example motion database into a binary tree. An approximate probabilistic tree search method exploits the coefficients of this low-dimensional representation and runs in sub-linear time. This probabilistic tree search returns a particular human motion with probability approximating the true distribution of human motions in the database. This sampling method is suitable for use with particle filtering techniques and is applied to articulated 3D tracking of humans within a Bayesian framework. Successful tracking results are presented, along with examples of synthesizing human motion using the model.

- Visual Motion | Pp. 784-800

Space-Time Tracking

Lorenzo Torresani; Christoph Bregler

We propose a new tracking technique that is able to capture non-rigid motion by exploiting a space-time rank constraint. Most tracking methods use a prior model in order to deal with challenging local features. The model usually has to be trained on carefully hand-labeled example data before the tracking algorithm can be used. Our new model-free tracking technique can overcome such limitations. This can be achieved in redefining the problem. Instead of first training a model and then tracking the model parameters, we are able to derive trajectory constraints first, and then estimate the model. This reduces the search space significantly and allows for a better feature disambiguation that would not be possible with traditional trackers. We demonstrate that sampling in the trajectory space, instead of in the space of shape configurations, allows us to track challenging footage without use of prior models.

- Visual Motion | Pp. 801-812