Catálogo de publicaciones - libros

Compartir en
redes sociales


The Seventeen Provers of the World: Foreword by Dana S. Scott

Freek Wiedijk (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Artificial Intelligence (incl. Robotics); Software Engineering; Mathematical Logic and Formal Languages

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-30704-4

ISBN electrónico

978-3-540-32888-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Tabla de contenidos

Introduction

Freek Wiedijk

Some years ago during lunch, Henk Barendregt told me about a book ( Algorithmics by David Harel) that compared programming languages by showing the same little program in each language that was treated. Then I thought: I could do that for proof assistants! And so I mailed various people in the proof assistant community and started the collection that is now in front of you.

Palabras clave: Prime Number; Mathematical Proof; Proof Assistant; Irreducible Element; Prime Number Theorem.

Pp. 1-9

Informal

Henk Barendregt

Statement $\sqrt{2} \in \mathbb{Q}$ Definitions Definition of P Definition on ℕ the predicate $P(m) \Leftrightarrow \exists n \cdot m^2 = 2n^2 \& m > 0$ .

Pp. 10-10

HOL

John Harrison; Konrad Slind; Rob Arthan

Statement ~rational(sqrt(&2)) Definitions Definition of sqrt let root = new_definition ’root(n) x = @u. (&0 < x = = > &0 < u) / u pow n = x’;; let sqrt = new_definition ’sqrt(x) = root(2) x’;;

Palabras clave: Inference Rule; High Order Logic; Logical Core; Jordan Curve Theorem; Primitive Rule.

Pp. 11-19

Mizar

Andrzej Trybulec

Statement sqrt 2 is irrational

Palabras clave: Natural Deduction; Jordan Curve Theorem; Adjusted Version; Mizar Mathematical Library; Grammatical Analyzer.

Pp. 20-23

PVS

Bart Jacobs; John Rushby

In particular the definition of sqrt below comes from this library. Answers by John Rushby. Statement NOT Rational?(sqrt(2))

Pp. 24-27

Coq

Laurent Théry; Pierre Letouzey; Georges Gonthier

Statement irrational (sqrt 2%nat).

Palabras clave: Standard Library; Lambda Calculus; Inductive Construction; Proof Term; Interactive Theorem Prove.

Pp. 28-35

Otter/Ivy

Michael Beeson; William McCune

Statement m(a,a) = m(2,m(b,b))

Pp. 36-40

Isabelle/Isar

Markus Wenzel; Larry Paulson

Statement $sqrt~ (real (2::nat))\not\in \mathbb{Q}$

Palabras clave: Natural Deduction; Proof Assistant; Proof Script; Proof Tool; Isar Proof.

Pp. 41-49

Alfa/Agda

Thierry Coquand

Statement prime p → noether A (multiple p) → isNotSquare p

Palabras clave: Localic Version; Formal Language; Type Theory; Case Notation; Actual Version.

Pp. 50-54

ACL2

Ruben Gamboa

Statement (implies (equal (* x x) 2) (and (realp x) (not (rationalp x))))

Pp. 55-66