Catálogo de publicaciones - libros

Compartir en
redes sociales


Equity and Efficiency Considerations of Public Higher Education

Salvatore Barbaro

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Public Economics; Economic Policy

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-26197-1

ISBN electrónico

978-3-540-28515-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Cobertura temática

Tabla de contenidos

Outline of the Book

Salvatore Barbaro

The Human Speechome Project is an effort to observe and computationally model the longitudinal course of language development for a single child at an unprecedented scale. We are collecting audio and video recordings for the first three years of one child’s life, in its near entirety, as it unfolds in the child’s home. A network of ceiling-mounted video cameras and microphones are generating approximately 300 gigabytes of observational data each day from the home. One of the worlds largest single-volume disk arrays is under construction to house approximately 400,000 hours of audio and video recordings that will accumulate over the three year study. To analyze the massive data set, we are developing new data mining technologies to help human analysts rapidly annotate and transcribe recordings using semi-automatic methods, and to detect and visualize salient patterns of behavior and interaction. To make sense of large-scale patterns that span across months or even years of observations, we are developing computational models of language acquisition that are able to learn from the childs experiential record. By creating and evaluating machine learning systems that step into the shoes of the child and sequentially process long stretches of perceptual experience, we will investigate possible language learning strategies used by children with an emphasis on early word learning.

Pp. 1-7

Previous Studies

Salvatore Barbaro

The Human Speechome Project is an effort to observe and computationally model the longitudinal course of language development for a single child at an unprecedented scale. We are collecting audio and video recordings for the first three years of one child’s life, in its near entirety, as it unfolds in the child’s home. A network of ceiling-mounted video cameras and microphones are generating approximately 300 gigabytes of observational data each day from the home. One of the worlds largest single-volume disk arrays is under construction to house approximately 400,000 hours of audio and video recordings that will accumulate over the three year study. To analyze the massive data set, we are developing new data mining technologies to help human analysts rapidly annotate and transcribe recordings using semi-automatic methods, and to detect and visualize salient patterns of behavior and interaction. To make sense of large-scale patterns that span across months or even years of observations, we are developing computational models of language acquisition that are able to learn from the childs experiential record. By creating and evaluating machine learning systems that step into the shoes of the child and sequentially process long stretches of perceptual experience, we will investigate possible language learning strategies used by children with an emphasis on early word learning.

Part I - The Distributional Impact of Subsidies to Higher Education in the Cross-Sectional Perspective | Pp. 11-20

Empirical Evidence Using GSOEP Data

Salvatore Barbaro

The Human Speechome Project is an effort to observe and computationally model the longitudinal course of language development for a single child at an unprecedented scale. We are collecting audio and video recordings for the first three years of one child’s life, in its near entirety, as it unfolds in the child’s home. A network of ceiling-mounted video cameras and microphones are generating approximately 300 gigabytes of observational data each day from the home. One of the worlds largest single-volume disk arrays is under construction to house approximately 400,000 hours of audio and video recordings that will accumulate over the three year study. To analyze the massive data set, we are developing new data mining technologies to help human analysts rapidly annotate and transcribe recordings using semi-automatic methods, and to detect and visualize salient patterns of behavior and interaction. To make sense of large-scale patterns that span across months or even years of observations, we are developing computational models of language acquisition that are able to learn from the childs experiential record. By creating and evaluating machine learning systems that step into the shoes of the child and sequentially process long stretches of perceptual experience, we will investigate possible language learning strategies used by children with an emphasis on early word learning.

Part I - The Distributional Impact of Subsidies to Higher Education in the Cross-Sectional Perspective | Pp. 21-36

Previous Related Literature

Salvatore Barbaro

The Human Speechome Project is an effort to observe and computationally model the longitudinal course of language development for a single child at an unprecedented scale. We are collecting audio and video recordings for the first three years of one child’s life, in its near entirety, as it unfolds in the child’s home. A network of ceiling-mounted video cameras and microphones are generating approximately 300 gigabytes of observational data each day from the home. One of the worlds largest single-volume disk arrays is under construction to house approximately 400,000 hours of audio and video recordings that will accumulate over the three year study. To analyze the massive data set, we are developing new data mining technologies to help human analysts rapidly annotate and transcribe recordings using semi-automatic methods, and to detect and visualize salient patterns of behavior and interaction. To make sense of large-scale patterns that span across months or even years of observations, we are developing computational models of language acquisition that are able to learn from the childs experiential record. By creating and evaluating machine learning systems that step into the shoes of the child and sequentially process long stretches of perceptual experience, we will investigate possible language learning strategies used by children with an emphasis on early word learning.

Part II - The Distributional Impact of Subsidies to Higher Education in the Long Run | Pp. 39-47

The Creedy–François Model of Higher-Education Economics as the Basic Framework for our Analysis

Salvatore Barbaro

The Human Speechome Project is an effort to observe and computationally model the longitudinal course of language development for a single child at an unprecedented scale. We are collecting audio and video recordings for the first three years of one child’s life, in its near entirety, as it unfolds in the child’s home. A network of ceiling-mounted video cameras and microphones are generating approximately 300 gigabytes of observational data each day from the home. One of the worlds largest single-volume disk arrays is under construction to house approximately 400,000 hours of audio and video recordings that will accumulate over the three year study. To analyze the massive data set, we are developing new data mining technologies to help human analysts rapidly annotate and transcribe recordings using semi-automatic methods, and to detect and visualize salient patterns of behavior and interaction. To make sense of large-scale patterns that span across months or even years of observations, we are developing computational models of language acquisition that are able to learn from the childs experiential record. By creating and evaluating machine learning systems that step into the shoes of the child and sequentially process long stretches of perceptual experience, we will investigate possible language learning strategies used by children with an emphasis on early word learning.

Part II - The Distributional Impact of Subsidies to Higher Education in the Long Run | Pp. 49-54

The Distributional Effect of Public Subsidization Among Graduates and Non-Graduates—The Life-Cycle Perspective

Salvatore Barbaro

The Human Speechome Project is an effort to observe and computationally model the longitudinal course of language development for a single child at an unprecedented scale. We are collecting audio and video recordings for the first three years of one child’s life, in its near entirety, as it unfolds in the child’s home. A network of ceiling-mounted video cameras and microphones are generating approximately 300 gigabytes of observational data each day from the home. One of the worlds largest single-volume disk arrays is under construction to house approximately 400,000 hours of audio and video recordings that will accumulate over the three year study. To analyze the massive data set, we are developing new data mining technologies to help human analysts rapidly annotate and transcribe recordings using semi-automatic methods, and to detect and visualize salient patterns of behavior and interaction. To make sense of large-scale patterns that span across months or even years of observations, we are developing computational models of language acquisition that are able to learn from the childs experiential record. By creating and evaluating machine learning systems that step into the shoes of the child and sequentially process long stretches of perceptual experience, we will investigate possible language learning strategies used by children with an emphasis on early word learning.

Part II - The Distributional Impact of Subsidies to Higher Education in the Long Run | Pp. 55-64

Alternative Options for Funding

Salvatore Barbaro

The Human Speechome Project is an effort to observe and computationally model the longitudinal course of language development for a single child at an unprecedented scale. We are collecting audio and video recordings for the first three years of one child’s life, in its near entirety, as it unfolds in the child’s home. A network of ceiling-mounted video cameras and microphones are generating approximately 300 gigabytes of observational data each day from the home. One of the worlds largest single-volume disk arrays is under construction to house approximately 400,000 hours of audio and video recordings that will accumulate over the three year study. To analyze the massive data set, we are developing new data mining technologies to help human analysts rapidly annotate and transcribe recordings using semi-automatic methods, and to detect and visualize salient patterns of behavior and interaction. To make sense of large-scale patterns that span across months or even years of observations, we are developing computational models of language acquisition that are able to learn from the childs experiential record. By creating and evaluating machine learning systems that step into the shoes of the child and sequentially process long stretches of perceptual experience, we will investigate possible language learning strategies used by children with an emphasis on early word learning.

Part II - The Distributional Impact of Subsidies to Higher Education in the Long Run | Pp. 65-73

Offsetting Subsidies and Progressive Taxation

Salvatore Barbaro

The Human Speechome Project is an effort to observe and computationally model the longitudinal course of language development for a single child at an unprecedented scale. We are collecting audio and video recordings for the first three years of one child’s life, in its near entirety, as it unfolds in the child’s home. A network of ceiling-mounted video cameras and microphones are generating approximately 300 gigabytes of observational data each day from the home. One of the worlds largest single-volume disk arrays is under construction to house approximately 400,000 hours of audio and video recordings that will accumulate over the three year study. To analyze the massive data set, we are developing new data mining technologies to help human analysts rapidly annotate and transcribe recordings using semi-automatic methods, and to detect and visualize salient patterns of behavior and interaction. To make sense of large-scale patterns that span across months or even years of observations, we are developing computational models of language acquisition that are able to learn from the childs experiential record. By creating and evaluating machine learning systems that step into the shoes of the child and sequentially process long stretches of perceptual experience, we will investigate possible language learning strategies used by children with an emphasis on early word learning.

Part III - The Role of Progressive Taxation | Pp. 77-83

Limits of Distortion-Offsetting Subsidies

Salvatore Barbaro

The Human Speechome Project is an effort to observe and computationally model the longitudinal course of language development for a single child at an unprecedented scale. We are collecting audio and video recordings for the first three years of one child’s life, in its near entirety, as it unfolds in the child’s home. A network of ceiling-mounted video cameras and microphones are generating approximately 300 gigabytes of observational data each day from the home. One of the worlds largest single-volume disk arrays is under construction to house approximately 400,000 hours of audio and video recordings that will accumulate over the three year study. To analyze the massive data set, we are developing new data mining technologies to help human analysts rapidly annotate and transcribe recordings using semi-automatic methods, and to detect and visualize salient patterns of behavior and interaction. To make sense of large-scale patterns that span across months or even years of observations, we are developing computational models of language acquisition that are able to learn from the childs experiential record. By creating and evaluating machine learning systems that step into the shoes of the child and sequentially process long stretches of perceptual experience, we will investigate possible language learning strategies used by children with an emphasis on early word learning.

Part III - The Role of Progressive Taxation | Pp. 85-86

Summary and Conclusion

Salvatore Barbaro

The Human Speechome Project is an effort to observe and computationally model the longitudinal course of language development for a single child at an unprecedented scale. We are collecting audio and video recordings for the first three years of one child’s life, in its near entirety, as it unfolds in the child’s home. A network of ceiling-mounted video cameras and microphones are generating approximately 300 gigabytes of observational data each day from the home. One of the worlds largest single-volume disk arrays is under construction to house approximately 400,000 hours of audio and video recordings that will accumulate over the three year study. To analyze the massive data set, we are developing new data mining technologies to help human analysts rapidly annotate and transcribe recordings using semi-automatic methods, and to detect and visualize salient patterns of behavior and interaction. To make sense of large-scale patterns that span across months or even years of observations, we are developing computational models of language acquisition that are able to learn from the childs experiential record. By creating and evaluating machine learning systems that step into the shoes of the child and sequentially process long stretches of perceptual experience, we will investigate possible language learning strategies used by children with an emphasis on early word learning.

Part III - The Role of Progressive Taxation | Pp. 87-89