Catálogo de publicaciones - libros

Compartir en
redes sociales


Game Theory and Mutual Misunderstanding: Scientific Dialogues in Five Acts

Mamoru Kaneko

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-22295-8

ISBN electrónico

978-3-540-26812-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

The reversal of particularity and generality in economics

Mamoru Kaneko

This paper explores the concept of locality in proofs of global safety properties of asynchronously composed, multi-process programs. Model checking on the full state space is often infeasible due to state explosion. A local proof, in contrast, is a collection of per-process invariants, which together imply the global safety property. Local proofs can be compact: but a central problem is that local reasoning is incomplete. In this paper, we present a “completion” algorithm, which gradually exposes facts about the internal state of components, until either a local proof or a real error is discovered. Experiments show that local reasoning can have significantly better performance over a reachability computation. Moreover, for some parameterized protocols, a local proof can be used to show correctness for instances.

Pp. 1-38

Konnyaku Mondo and Game Theory

Mamoru Kaneko

This paper explores the concept of locality in proofs of global safety properties of asynchronously composed, multi-process programs. Model checking on the full state space is often infeasible due to state explosion. A local proof, in contrast, is a collection of per-process invariants, which together imply the global safety property. Local proofs can be compact: but a central problem is that local reasoning is incomplete. In this paper, we present a “completion” algorithm, which gradually exposes facts about the internal state of components, until either a local proof or a real error is discovered. Experiments show that local reasoning can have significantly better performance over a reachability computation. Moreover, for some parameterized protocols, a local proof can be used to show correctness for instances.

Pp. 39-78

The market economy in a rage

Mamoru Kaneko

This paper explores the concept of locality in proofs of global safety properties of asynchronously composed, multi-process programs. Model checking on the full state space is often infeasible due to state explosion. A local proof, in contrast, is a collection of per-process invariants, which together imply the global safety property. Local proofs can be compact: but a central problem is that local reasoning is incomplete. In this paper, we present a “completion” algorithm, which gradually exposes facts about the internal state of components, until either a local proof or a real error is discovered. Experiments show that local reasoning can have significantly better performance over a reachability computation. Moreover, for some parameterized protocols, a local proof can be used to show correctness for instances.

Pp. 79-138

Decision making and Nash equilibrium

Mamoru Kaneko

This paper explores the concept of locality in proofs of global safety properties of asynchronously composed, multi-process programs. Model checking on the full state space is often infeasible due to state explosion. A local proof, in contrast, is a collection of per-process invariants, which together imply the global safety property. Local proofs can be compact: but a central problem is that local reasoning is incomplete. In this paper, we present a “completion” algorithm, which gradually exposes facts about the internal state of components, until either a local proof or a real error is discovered. Experiments show that local reasoning can have significantly better performance over a reachability computation. Moreover, for some parameterized protocols, a local proof can be used to show correctness for instances.

Pp. 139-194

The individual and society

Mamoru Kaneko

This paper explores the concept of locality in proofs of global safety properties of asynchronously composed, multi-process programs. Model checking on the full state space is often infeasible due to state explosion. A local proof, in contrast, is a collection of per-process invariants, which together imply the global safety property. Local proofs can be compact: but a central problem is that local reasoning is incomplete. In this paper, we present a “completion” algorithm, which gradually exposes facts about the internal state of components, until either a local proof or a real error is discovered. Experiments show that local reasoning can have significantly better performance over a reachability computation. Moreover, for some parameterized protocols, a local proof can be used to show correctness for instances.

Pp. 195-239