Catálogo de publicaciones - libros

Compartir en
redes sociales


Advances in Modern Tourism Research: Economic Perspectives

Álvaro Matias ; Peter Nijkamp ; Paulo Neto (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Tourism Management; Methodology of the Social Sciences; Regional/Spatial Science; Development Economics; Economic Geography; Ecotoxicology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-7908-1717-1

ISBN electrónico

978-3-7908-1718-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Physica-Verlag 2007

Tabla de contenidos

Trends in Tourism Research: Prefatory Remarks

Álvaro Matias; Paulo Neto; Peter Nijkamp

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

- Trends in Tourism Research: Prefatory Remarks | Pp. 1-5

Advances in Tourism Research: Theoretical Paradigms and Accountability

Gayle R. Jennings

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part I - New Analysis Frameworks in Tourism Economics | Pp. 9-35

The Influence of Immigration and International Tourism on the Import Demand for Consumer Goods – A Theoretical Model

Christian Fischer

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part I - New Analysis Frameworks in Tourism Economics | Pp. 37-49

An Economic Analysis of Tourism Contracts: Allotment and Free Sale*

Massimiliano Castellani; Maurizio Mussoni

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part I - New Analysis Frameworks in Tourism Economics | Pp. 51-85

Is Tourism Specialization Sustainable for a Small Island Economy? A Cyclical Perspective

Sauveur Giannoni; Marie-Antoinette Maupertuis

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part I - New Analysis Frameworks in Tourism Economics | Pp. 87-105

Efficiency in a Chain of Small Hotels with a Stochastic Production Frontier Model

Carlos Pestana Barros; Álvaro Matias

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part I - New Analysis Frameworks in Tourism Economics | Pp. 107-129

Destination Competitiveness: Meeting Sustainability Objectives Through Strategic Planning and Visioning

Lisa Ruhanen

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part II - New Operational Tools in Tourism Research | Pp. 133-151

International Tourism and Economic Growth: A Panel Data Approach

Tiago Neves Sequeira; Carla Campos

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part II - New Operational Tools in Tourism Research | Pp. 153-163

Benchmarking in Tourism Destinations; Keeping in Mind the Sustainable Paradigm

Valentina Bosetti; Mariaester Cassinelli; Alessandro Lanza

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part II - New Operational Tools in Tourism Research | Pp. 165-180

Microeconomic Determinants of the Duration of Stay of Tourists

Joaquín Alegre; Pou Llorenç

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth’s atmosphere, oceans, vegetation and soils of the terrestrial ecosystem and fossil fuels. Carbon in the form of inorganic and organic compounds, notably carbon dioxide (CO ), is cycled between different components of a system. For example, green plants absorb CO from the atmosphere during photosynthesis, also called primary production, and release CO back into the atmosphere during respiration. Another channel of exchange of CO is between the oceans and the atmosphere: CO dissolved in the oceans is used by marine biota in photosynthesis.

Two important anthropogenic processes that contribute CO to the atmosphere are burning of fossil fuels and changes in land use. Fossil fuels, namely coal, oil and natural gas, are burnt in industries, power plants and automobiles. Land use is a broad term, which encompasses a host of essentially human-induced activities including conversion of natural ecosystems such as forests and grasslands to managed systems such as cropland, grazing land and settlements. Land conversion and other human activities such as extraction and burning of biomass and livestock grazing lead to soil degradation and emission of carbon contained in biomass and in soil to the atmosphere: CO emissions from the biosphere to the atmosphere result mainly from burning and decomposition of organic matter.

Part II - New Operational Tools in Tourism Research | Pp. 181-206