Catálogo de publicaciones - libros
Robot Cognition and Navigation: An Experiment with Mobile Robots
Srikanta Patnaik
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-23446-3
ISBN electrónico
978-3-540-68916-4
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer 2007
Cobertura temática
Tabla de contenidos
Cybernetic View of Robot Cognition and Perception
Srikanta Patnaik
The main subject of this paper is the detailed description of an algorithm solving elastoplastic deformations. Our concern is a one time-step problem, for which the minimization of a convex but non-smooth functional is required. We propose a minimization algorithm based on the reduction of the functional to a quadratic functional in the displacement and the plastic strain increment omitting a certain nonlinear dependency. The algorithm also allows for an easy extension to higher order finite elements. A numerical example in 2D reports on first results for uniform h- and p- mesh refinements.
Pp. 1-20
Map Building
Srikanta Patnaik
The main subject of this paper is the detailed description of an algorithm solving elastoplastic deformations. Our concern is a one time-step problem, for which the minimization of a convex but non-smooth functional is required. We propose a minimization algorithm based on the reduction of the functional to a quadratic functional in the displacement and the plastic strain increment omitting a certain nonlinear dependency. The algorithm also allows for an easy extension to higher order finite elements. A numerical example in 2D reports on first results for uniform h- and p- mesh refinements.
Pp. 21-38
Path Planning
Srikanta Patnaik
The main subject of this paper is the detailed description of an algorithm solving elastoplastic deformations. Our concern is a one time-step problem, for which the minimization of a convex but non-smooth functional is required. We propose a minimization algorithm based on the reduction of the functional to a quadratic functional in the displacement and the plastic strain increment omitting a certain nonlinear dependency. The algorithm also allows for an easy extension to higher order finite elements. A numerical example in 2D reports on first results for uniform h- and p- mesh refinements.
Pp. 39-58
Navigation Using a Genetic Algorithm
Srikanta Patnaik
The main subject of this paper is the detailed description of an algorithm solving elastoplastic deformations. Our concern is a one time-step problem, for which the minimization of a convex but non-smooth functional is required. We propose a minimization algorithm based on the reduction of the functional to a quadratic functional in the displacement and the plastic strain increment omitting a certain nonlinear dependency. The algorithm also allows for an easy extension to higher order finite elements. A numerical example in 2D reports on first results for uniform h- and p- mesh refinements.
Pp. 59-76
Robot Programming Packages
Srikanta Patnaik
The main subject of this paper is the detailed description of an algorithm solving elastoplastic deformations. Our concern is a one time-step problem, for which the minimization of a convex but non-smooth functional is required. We propose a minimization algorithm based on the reduction of the functional to a quadratic functional in the displacement and the plastic strain increment omitting a certain nonlinear dependency. The algorithm also allows for an easy extension to higher order finite elements. A numerical example in 2D reports on first results for uniform h- and p- mesh refinements.
Pp. 77-113
Robot Parameter Display
Srikanta Patnaik
The main subject of this paper is the detailed description of an algorithm solving elastoplastic deformations. Our concern is a one time-step problem, for which the minimization of a convex but non-smooth functional is required. We propose a minimization algorithm based on the reduction of the functional to a quadratic functional in the displacement and the plastic strain increment omitting a certain nonlinear dependency. The algorithm also allows for an easy extension to higher order finite elements. A numerical example in 2D reports on first results for uniform h- and p- mesh refinements.
Pp. 115-125
Program for BotSpeak
Srikanta Patnaik
The main subject of this paper is the detailed description of an algorithm solving elastoplastic deformations. Our concern is a one time-step problem, for which the minimization of a convex but non-smooth functional is required. We propose a minimization algorithm based on the reduction of the functional to a quadratic functional in the displacement and the plastic strain increment omitting a certain nonlinear dependency. The algorithm also allows for an easy extension to higher order finite elements. A numerical example in 2D reports on first results for uniform h- and p- mesh refinements.
Pp. 127-136
Gripper Control Program
Srikanta Patnaik
The main subject of this paper is the detailed description of an algorithm solving elastoplastic deformations. Our concern is a one time-step problem, for which the minimization of a convex but non-smooth functional is required. We propose a minimization algorithm based on the reduction of the functional to a quadratic functional in the displacement and the plastic strain increment omitting a certain nonlinear dependency. The algorithm also allows for an easy extension to higher order finite elements. A numerical example in 2D reports on first results for uniform h- and p- mesh refinements.
Pp. 137-150
Program for Sonar Reading Display
Srikanta Patnaik
The main subject of this paper is the detailed description of an algorithm solving elastoplastic deformations. Our concern is a one time-step problem, for which the minimization of a convex but non-smooth functional is required. We propose a minimization algorithm based on the reduction of the functional to a quadratic functional in the displacement and the plastic strain increment omitting a certain nonlinear dependency. The algorithm also allows for an easy extension to higher order finite elements. A numerical example in 2D reports on first results for uniform h- and p- mesh refinements.
Pp. 151-161
Program for Wandering Within the Workspace
Srikanta Patnaik
The main subject of this paper is the detailed description of an algorithm solving elastoplastic deformations. Our concern is a one time-step problem, for which the minimization of a convex but non-smooth functional is required. We propose a minimization algorithm based on the reduction of the functional to a quadratic functional in the displacement and the plastic strain increment omitting a certain nonlinear dependency. The algorithm also allows for an easy extension to higher order finite elements. A numerical example in 2D reports on first results for uniform h- and p- mesh refinements.
Pp. 163-173