Catálogo de publicaciones - tesis

Compartir en
redes sociales


Título de Acceso Abierto

Desagregación de datos de microondas pasivas y activas para la estimación de humedad superficial del suelo en áreas de llanura de la región Pampeana

Gabriel Agustín García Virginia Venturini Héctor Del Valle Walter Sione Marcelo Scavuzzo Marc Thibeault Leticia Rodríguez

acceptedVersion.

Resumen/Descripción – provisto por el repositorio digital
Soil moisture (SM) is a state variable that influences the redistribution of water within the hydrological cycle. For decades, its estimation has been studied on a regional scale to solve hydrological, meteorological, agronomic and climatological problems. In this sense, remote sensing provides instantaneously observations of this variable on a large scale. Microwaves have allowed the development of different methodologies to obtain SM maps taking advantage of the complementary information provided by both active and passive microwave sensors. In this context, the thesis objective is to develop a procedure to estimate SM under moderate vegetation cover in plain areas, introducing the disaggregation of passive microwave information, radar and hydro-meteorological variables in the water balance. For this, two study areas were selected and a model was developed based on the water balance equation that represents the processes that influence in SM variability. The model takes into account water input and output processes of the soil system, and represents them with different hydro-environmental variables and radar data. For the resolution of the balance equation, multiple linear regression and multilayer perceptron statistical methodologies were selected. The resulting models were obtained with precipitation, air temperature and relative humidity observations and with radar data from the Sentinel-1 satellite mission. Based on the partial results obtained, the same methodologies and assumptions were applied to disaggregate SM SMAP product.
Palabras clave – provistas por el repositorio digital

Soil moisture; Multiple linear regression; Neural networks; Sentinel-1; SMAP; GPM; Humedad de suelo; Regresión lineal múltiple; Redes neuronales

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 2018 Biblioteca Virtual de la Universidad Nacional del Litoral (SNRD) acceso abierto

Información

Tipo de recurso:

tesis

Idiomas de la publicación

  • español castellano

País de edición

Argentina

Fecha de publicación