Catálogo de publicaciones - revistas

Compartir en
redes sociales


Journal of Computer-Aided Molecular Design

Resumen/Descripción – provisto por la editorial en inglés
The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas: theoretical chemistry;computational chemistry; computer and molecular graphics; molecular modeling;protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage.
Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 1997 / hasta dic. 2023 SpringerLink

Información

Tipo de recurso:

revistas

ISSN impreso

0920-654X

ISSN electrónico

1573-4951

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Tabla de contenidos

Investigation of the binding mode of a novel cruzain inhibitor by docking, molecular dynamics, ab initio and MM/PBSA calculations

Luan Carvalho MartinsORCID; Pedro Henrique Monteiro TorresORCID; Renata Barbosa de OliveiraORCID; Pedro Geraldo Pascutti; Elio A. CinoORCID; Rafaela Salgado FerreiraORCID

Palabras clave: Physical and Theoretical Chemistry; Drug Discovery; Computer Science Applications.

Pp. 591-605

Application of target repositioning and in silico screening to exploit fatty acid binding proteins (FABPs) from Echinococcus multilocularis as possible drug targets

Julián A. Bélgamo; Lucas N. Alberca; Jorge L. Pórfido; Franco N. Caram Romero; Santiago Rodriguez; Alan Talevi; Betina Córsico; Gisela R. FranchiniORCID

Palabras clave: Physical and Theoretical Chemistry; Computer Science Applications; Drug Discovery.

Pp. 1275-1288

Enabling data-limited chemical bioactivity predictions through deep neural network transfer learning

Ruifeng LiuORCID; Srinivas LaxminarayanORCID; Jaques ReifmanORCID; Anders WallqvistORCID

Palabras clave: Physical and Theoretical Chemistry; Computer Science Applications; Drug Discovery.

Pp. 867-878

Improvement of multi-task learning by data enrichment: application for drug discovery

Ekaterina A. Sosnina; Sergey Sosnin; Maxim V. Fedorov

Palabras clave: Physical and Theoretical Chemistry; Computer Science Applications; Drug Discovery.

Pp. 183-200