Catálogo de publicaciones - libros
Advanced Control of Industrial Processes: Structures and Algorithms
Piotr Tatjewski
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-84628-634-6
ISBN electrónico
978-1-84628-635-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer-Verlag London Limited 2007
Cobertura temática
Tabla de contenidos
Multilayer Control Structure
Piotr Tatjewski
Abstract: This chapter describes a new approach to coaching collaboration in a synchronous computer mediated learning context. Prior work on supporting collaboration has relied largely on comparing student discourse to models of collaborative discourse. Comparison of student work to expert solutions is prevalent in individual coaching paradigms. Although these approaches are valuable, our approach evaluates the potential contribution of tracking student participation during group problem solving and comparing students' individual and group solutions. Our theoretical motivation is that conflicts between individual and group solutions constitute learning opportunities, provided that students recognize and address these conflicts. The coach encourages such negotiation when differences are detected, and also encourages participation in other ways. Our evaluation relied primarily on expert judgement and secondarily on student reactions to the coach. Results show that the quality of the generated advice was good; however, other knowledge sources should be consulted to improve coverage of advice to a broader range of situations and advice types. This coaching approach could be applied in those learning tasks oriented towards the solution of a problem and in which structured representations of problem solutions exist.
Pp. 1-31
Model-based Fuzzy Control
Piotr Tatjewski
Abstract: This chapter describes a new approach to coaching collaboration in a synchronous computer mediated learning context. Prior work on supporting collaboration has relied largely on comparing student discourse to models of collaborative discourse. Comparison of student work to expert solutions is prevalent in individual coaching paradigms. Although these approaches are valuable, our approach evaluates the potential contribution of tracking student participation during group problem solving and comparing students' individual and group solutions. Our theoretical motivation is that conflicts between individual and group solutions constitute learning opportunities, provided that students recognize and address these conflicts. The coach encourages such negotiation when differences are detected, and also encourages participation in other ways. Our evaluation relied primarily on expert judgement and secondarily on student reactions to the coach. Results show that the quality of the generated advice was good; however, other knowledge sources should be consulted to improve coverage of advice to a broader range of situations and advice types. This coaching approach could be applied in those learning tasks oriented towards the solution of a problem and in which structured representations of problem solutions exist.
Pp. 33-106
Model-based Predictive Control
Piotr Tatjewski
Abstract: This chapter describes a new approach to coaching collaboration in a synchronous computer mediated learning context. Prior work on supporting collaboration has relied largely on comparing student discourse to models of collaborative discourse. Comparison of student work to expert solutions is prevalent in individual coaching paradigms. Although these approaches are valuable, our approach evaluates the potential contribution of tracking student participation during group problem solving and comparing students' individual and group solutions. Our theoretical motivation is that conflicts between individual and group solutions constitute learning opportunities, provided that students recognize and address these conflicts. The coach encourages such negotiation when differences are detected, and also encourages participation in other ways. Our evaluation relied primarily on expert judgement and secondarily on student reactions to the coach. Results show that the quality of the generated advice was good; however, other knowledge sources should be consulted to improve coverage of advice to a broader range of situations and advice types. This coaching approach could be applied in those learning tasks oriented towards the solution of a problem and in which structured representations of problem solutions exist.
Pp. 107-271
Set-point Optimization
Piotr Tatjewski
Abstract: This chapter describes a new approach to coaching collaboration in a synchronous computer mediated learning context. Prior work on supporting collaboration has relied largely on comparing student discourse to models of collaborative discourse. Comparison of student work to expert solutions is prevalent in individual coaching paradigms. Although these approaches are valuable, our approach evaluates the potential contribution of tracking student participation during group problem solving and comparing students' individual and group solutions. Our theoretical motivation is that conflicts between individual and group solutions constitute learning opportunities, provided that students recognize and address these conflicts. The coach encourages such negotiation when differences are detected, and also encourages participation in other ways. Our evaluation relied primarily on expert judgement and secondarily on student reactions to the coach. Results show that the quality of the generated advice was good; however, other knowledge sources should be consulted to improve coverage of advice to a broader range of situations and advice types. This coaching approach could be applied in those learning tasks oriented towards the solution of a problem and in which structured representations of problem solutions exist.
Pp. 273-316