Catálogo de publicaciones - libros

Compartir en
redes sociales


Advanced Control of Industrial Processes: Structures and Algorithms

Piotr Tatjewski

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-84628-634-6

ISBN electrónico

978-1-84628-635-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag London Limited 2007

Cobertura temática

Tabla de contenidos

Multilayer Control Structure

Piotr Tatjewski

Abstract: This chapter describes a new approach to coaching collaboration in a synchronous computer mediated learning context. Prior work on supporting collaboration has relied largely on comparing student discourse to models of collaborative discourse. Comparison of student work to expert solutions is prevalent in individual coaching paradigms. Although these approaches are valuable, our approach evaluates the potential contribution of tracking student participation during group problem solving and comparing students' individual and group solutions. Our theoretical motivation is that conflicts between individual and group solutions constitute learning opportunities, provided that students recognize and address these conflicts. The coach encourages such negotiation when differences are detected, and also encourages participation in other ways. Our evaluation relied primarily on expert judgement and secondarily on student reactions to the coach. Results show that the quality of the generated advice was good; however, other knowledge sources should be consulted to improve coverage of advice to a broader range of situations and advice types. This coaching approach could be applied in those learning tasks oriented towards the solution of a problem and in which structured representations of problem solutions exist.

Pp. 1-31

Model-based Fuzzy Control

Piotr Tatjewski

Abstract: This chapter describes a new approach to coaching collaboration in a synchronous computer mediated learning context. Prior work on supporting collaboration has relied largely on comparing student discourse to models of collaborative discourse. Comparison of student work to expert solutions is prevalent in individual coaching paradigms. Although these approaches are valuable, our approach evaluates the potential contribution of tracking student participation during group problem solving and comparing students' individual and group solutions. Our theoretical motivation is that conflicts between individual and group solutions constitute learning opportunities, provided that students recognize and address these conflicts. The coach encourages such negotiation when differences are detected, and also encourages participation in other ways. Our evaluation relied primarily on expert judgement and secondarily on student reactions to the coach. Results show that the quality of the generated advice was good; however, other knowledge sources should be consulted to improve coverage of advice to a broader range of situations and advice types. This coaching approach could be applied in those learning tasks oriented towards the solution of a problem and in which structured representations of problem solutions exist.

Pp. 33-106

Model-based Predictive Control

Piotr Tatjewski

Abstract: This chapter describes a new approach to coaching collaboration in a synchronous computer mediated learning context. Prior work on supporting collaboration has relied largely on comparing student discourse to models of collaborative discourse. Comparison of student work to expert solutions is prevalent in individual coaching paradigms. Although these approaches are valuable, our approach evaluates the potential contribution of tracking student participation during group problem solving and comparing students' individual and group solutions. Our theoretical motivation is that conflicts between individual and group solutions constitute learning opportunities, provided that students recognize and address these conflicts. The coach encourages such negotiation when differences are detected, and also encourages participation in other ways. Our evaluation relied primarily on expert judgement and secondarily on student reactions to the coach. Results show that the quality of the generated advice was good; however, other knowledge sources should be consulted to improve coverage of advice to a broader range of situations and advice types. This coaching approach could be applied in those learning tasks oriented towards the solution of a problem and in which structured representations of problem solutions exist.

Pp. 107-271

Set-point Optimization

Piotr Tatjewski

Abstract: This chapter describes a new approach to coaching collaboration in a synchronous computer mediated learning context. Prior work on supporting collaboration has relied largely on comparing student discourse to models of collaborative discourse. Comparison of student work to expert solutions is prevalent in individual coaching paradigms. Although these approaches are valuable, our approach evaluates the potential contribution of tracking student participation during group problem solving and comparing students' individual and group solutions. Our theoretical motivation is that conflicts between individual and group solutions constitute learning opportunities, provided that students recognize and address these conflicts. The coach encourages such negotiation when differences are detected, and also encourages participation in other ways. Our evaluation relied primarily on expert judgement and secondarily on student reactions to the coach. Results show that the quality of the generated advice was good; however, other knowledge sources should be consulted to improve coverage of advice to a broader range of situations and advice types. This coaching approach could be applied in those learning tasks oriented towards the solution of a problem and in which structured representations of problem solutions exist.

Pp. 273-316