Catálogo de publicaciones - libros
The Science of Phototherapy: An Introduction
Leonard I. Grossweiner James B. Grossweiner B.H. Gerald Rogers
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-2883-0
ISBN electrónico
978-1-4020-2885-4
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer 2005
Cobertura temática
Tabla de contenidos
An Overview of Phototherapy
Leonard I. Grossweiner; James B. Grossweiner; B.H. Gerald Rogers
Functional Magnetic Resonance Imaging (FMRI) allows indirect observation of brain activity through changes in blood oxygenation, which are driven by neural activity. ICA has become a popular exploratory analysis approach due its advantages over regression methods in accounting for structured noise as well as signals of interest. However, standard ICA in FMRI ignores some of the spatial and temporal structure contained in such data. Using prior knowledge that the Blood Oxygenation Level Dependent (BOLD) response is spatially smooth and manifests itself on certain spatial scales, we estimate the unmixing matrix using only the coarse coefficients of a 3D Discrete Wavelet Transform (DWT). We utilise prior biophysical knowledge that the BOLD response manifests itself mainly at the spatial scales we use for unmixing. Tests on realistic synthetic FMRI data show improved accuracy, greater robustness to misspecification of underlying dimensionality, and an approximate fourfold speed increase; in addition the algorithm becomes parallelizable.
Pp. 1-8
Optical Physics and Biotechnology
Leonard I. Grossweiner; James B. Grossweiner; B.H. Gerald Rogers
Functional Magnetic Resonance Imaging (FMRI) allows indirect observation of brain activity through changes in blood oxygenation, which are driven by neural activity. ICA has become a popular exploratory analysis approach due its advantages over regression methods in accounting for structured noise as well as signals of interest. However, standard ICA in FMRI ignores some of the spatial and temporal structure contained in such data. Using prior knowledge that the Blood Oxygenation Level Dependent (BOLD) response is spatially smooth and manifests itself on certain spatial scales, we estimate the unmixing matrix using only the coarse coefficients of a 3D Discrete Wavelet Transform (DWT). We utilise prior biophysical knowledge that the BOLD response manifests itself mainly at the spatial scales we use for unmixing. Tests on realistic synthetic FMRI data show improved accuracy, greater robustness to misspecification of underlying dimensionality, and an approximate fourfold speed increase; in addition the algorithm becomes parallelizable.
Pp. 9-55
Phototherapy Light Sources
Leonard I. Grossweiner; James B. Grossweiner; B.H. Gerald Rogers
Functional Magnetic Resonance Imaging (FMRI) allows indirect observation of brain activity through changes in blood oxygenation, which are driven by neural activity. ICA has become a popular exploratory analysis approach due its advantages over regression methods in accounting for structured noise as well as signals of interest. However, standard ICA in FMRI ignores some of the spatial and temporal structure contained in such data. Using prior knowledge that the Blood Oxygenation Level Dependent (BOLD) response is spatially smooth and manifests itself on certain spatial scales, we estimate the unmixing matrix using only the coarse coefficients of a 3D Discrete Wavelet Transform (DWT). We utilise prior biophysical knowledge that the BOLD response manifests itself mainly at the spatial scales we use for unmixing. Tests on realistic synthetic FMRI data show improved accuracy, greater robustness to misspecification of underlying dimensionality, and an approximate fourfold speed increase; in addition the algorithm becomes parallelizable.
Pp. 57-92
Quantum Description of Light Interactions with Matter
Leonard I. Grossweiner; James B. Grossweiner; B.H. Gerald Rogers
Functional Magnetic Resonance Imaging (FMRI) allows indirect observation of brain activity through changes in blood oxygenation, which are driven by neural activity. ICA has become a popular exploratory analysis approach due its advantages over regression methods in accounting for structured noise as well as signals of interest. However, standard ICA in FMRI ignores some of the spatial and temporal structure contained in such data. Using prior knowledge that the Blood Oxygenation Level Dependent (BOLD) response is spatially smooth and manifests itself on certain spatial scales, we estimate the unmixing matrix using only the coarse coefficients of a 3D Discrete Wavelet Transform (DWT). We utilise prior biophysical knowledge that the BOLD response manifests itself mainly at the spatial scales we use for unmixing. Tests on realistic synthetic FMRI data show improved accuracy, greater robustness to misspecification of underlying dimensionality, and an approximate fourfold speed increase; in addition the algorithm becomes parallelizable.
Pp. 93-142
Tissue Optics
Leonard I. Grossweiner; James B. Grossweiner; B.H. Gerald Rogers
Functional Magnetic Resonance Imaging (FMRI) allows indirect observation of brain activity through changes in blood oxygenation, which are driven by neural activity. ICA has become a popular exploratory analysis approach due its advantages over regression methods in accounting for structured noise as well as signals of interest. However, standard ICA in FMRI ignores some of the spatial and temporal structure contained in such data. Using prior knowledge that the Blood Oxygenation Level Dependent (BOLD) response is spatially smooth and manifests itself on certain spatial scales, we estimate the unmixing matrix using only the coarse coefficients of a 3D Discrete Wavelet Transform (DWT). We utilise prior biophysical knowledge that the BOLD response manifests itself mainly at the spatial scales we use for unmixing. Tests on realistic synthetic FMRI data show improved accuracy, greater robustness to misspecification of underlying dimensionality, and an approximate fourfold speed increase; in addition the algorithm becomes parallelizable.
Pp. 143-170
Photochemical Damage to Biological Systems
Leonard I. Grossweiner; James B. Grossweiner; B.H. Gerald Rogers
Functional Magnetic Resonance Imaging (FMRI) allows indirect observation of brain activity through changes in blood oxygenation, which are driven by neural activity. ICA has become a popular exploratory analysis approach due its advantages over regression methods in accounting for structured noise as well as signals of interest. However, standard ICA in FMRI ignores some of the spatial and temporal structure contained in such data. Using prior knowledge that the Blood Oxygenation Level Dependent (BOLD) response is spatially smooth and manifests itself on certain spatial scales, we estimate the unmixing matrix using only the coarse coefficients of a 3D Discrete Wavelet Transform (DWT). We utilise prior biophysical knowledge that the BOLD response manifests itself mainly at the spatial scales we use for unmixing. Tests on realistic synthetic FMRI data show improved accuracy, greater robustness to misspecification of underlying dimensionality, and an approximate fourfold speed increase; in addition the algorithm becomes parallelizable.
Pp. 171-195
Optical Methods of Imaging and Diagnosis
Leonard I. Grossweiner; James B. Grossweiner; B.H. Gerald Rogers
Functional Magnetic Resonance Imaging (FMRI) allows indirect observation of brain activity through changes in blood oxygenation, which are driven by neural activity. ICA has become a popular exploratory analysis approach due its advantages over regression methods in accounting for structured noise as well as signals of interest. However, standard ICA in FMRI ignores some of the spatial and temporal structure contained in such data. Using prior knowledge that the Blood Oxygenation Level Dependent (BOLD) response is spatially smooth and manifests itself on certain spatial scales, we estimate the unmixing matrix using only the coarse coefficients of a 3D Discrete Wavelet Transform (DWT). We utilise prior biophysical knowledge that the BOLD response manifests itself mainly at the spatial scales we use for unmixing. Tests on realistic synthetic FMRI data show improved accuracy, greater robustness to misspecification of underlying dimensionality, and an approximate fourfold speed increase; in addition the algorithm becomes parallelizable.
Pp. 197-210
Light Dosimetry Modeling for Phototherapy
Leonard I. Grossweiner; James B. Grossweiner; B.H. Gerald Rogers
Functional Magnetic Resonance Imaging (FMRI) allows indirect observation of brain activity through changes in blood oxygenation, which are driven by neural activity. ICA has become a popular exploratory analysis approach due its advantages over regression methods in accounting for structured noise as well as signals of interest. However, standard ICA in FMRI ignores some of the spatial and temporal structure contained in such data. Using prior knowledge that the Blood Oxygenation Level Dependent (BOLD) response is spatially smooth and manifests itself on certain spatial scales, we estimate the unmixing matrix using only the coarse coefficients of a 3D Discrete Wavelet Transform (DWT). We utilise prior biophysical knowledge that the BOLD response manifests itself mainly at the spatial scales we use for unmixing. Tests on realistic synthetic FMRI data show improved accuracy, greater robustness to misspecification of underlying dimensionality, and an approximate fourfold speed increase; in addition the algorithm becomes parallelizable.
Pp. 211-223
Laser Interactions with Tissues
Leonard I. Grossweiner; James B. Grossweiner; B.H. Gerald Rogers
Functional Magnetic Resonance Imaging (FMRI) allows indirect observation of brain activity through changes in blood oxygenation, which are driven by neural activity. ICA has become a popular exploratory analysis approach due its advantages over regression methods in accounting for structured noise as well as signals of interest. However, standard ICA in FMRI ignores some of the spatial and temporal structure contained in such data. Using prior knowledge that the Blood Oxygenation Level Dependent (BOLD) response is spatially smooth and manifests itself on certain spatial scales, we estimate the unmixing matrix using only the coarse coefficients of a 3D Discrete Wavelet Transform (DWT). We utilise prior biophysical knowledge that the BOLD response manifests itself mainly at the spatial scales we use for unmixing. Tests on realistic synthetic FMRI data show improved accuracy, greater robustness to misspecification of underlying dimensionality, and an approximate fourfold speed increase; in addition the algorithm becomes parallelizable.
Pp. 225-241
Photodynamic Therapy: Science and Technology
Leonard I. Grossweiner; James B. Grossweiner; B.H. Gerald Rogers
Functional Magnetic Resonance Imaging (FMRI) allows indirect observation of brain activity through changes in blood oxygenation, which are driven by neural activity. ICA has become a popular exploratory analysis approach due its advantages over regression methods in accounting for structured noise as well as signals of interest. However, standard ICA in FMRI ignores some of the spatial and temporal structure contained in such data. Using prior knowledge that the Blood Oxygenation Level Dependent (BOLD) response is spatially smooth and manifests itself on certain spatial scales, we estimate the unmixing matrix using only the coarse coefficients of a 3D Discrete Wavelet Transform (DWT). We utilise prior biophysical knowledge that the BOLD response manifests itself mainly at the spatial scales we use for unmixing. Tests on realistic synthetic FMRI data show improved accuracy, greater robustness to misspecification of underlying dimensionality, and an approximate fourfold speed increase; in addition the algorithm becomes parallelizable.
Pp. 243-273