Catálogo de publicaciones - libros
Optical Polarizationin Biomedical Applications
Valery V. Tuchin Lihong V. Wang Dmitry A. Zimnyakov
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-25876-6
ISBN electrónico
978-3-540-45321-5
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Cobertura temática
Tabla de contenidos
Introduction
Valery V. Tuchin; Lihong V. Wang; Dmitry A. Zimnyakov
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 1-5
Tissue Structure and Optical Models
Valery V. Tuchin; Lihong V. Wang; Dmitry A. Zimnyakov
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 7-28
Polarized Light Interactions with Weakly Scattering Media
Valery V. Tuchin; Lihong V. Wang; Dmitry A. Zimnyakov
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 29-43
Polarized Light Interactions with Strongly Scattering Media
Valery V. Tuchin; Lihong V. Wang; Dmitry A. Zimnyakov
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 45-67
Polarization Properties of Tissues and Phantoms
Valery V. Tuchin; Lihong V. Wang; Dmitry A. Zimnyakov
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 69-84
Polarization-Dependent Interference of Multiply Scattered Light
Valery V. Tuchin; Lihong V. Wang; Dmitry A. Zimnyakov
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 85-110
Decay of Light Polarization in Random Multiple Scattering Media
Valery V. Tuchin; Lihong V. Wang; Dmitry A. Zimnyakov
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 111-138
Degree of Polarization in Laser Speckles from Turbid Media
Valery V. Tuchin; Lihong V. Wang; Dmitry A. Zimnyakov
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 139-147
Monte Carlo Modeling of Polarization Propagation
Valery V. Tuchin; Lihong V. Wang; Dmitry A. Zimnyakov
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 149-159
Polarization-Sensitive Optical Coherence Tomography
Valery V. Tuchin; Lihong V. Wang; Dmitry A. Zimnyakov
Genetic regulatory networks have been modeled as discrete transition systems by many approaches, benefiting from a large number of formal verification algorithms available for the analysis of discrete transition systems. However, most of these approaches do not scale up well. In this article, we explore the use of compositionality for the analysis of genetic regulatory networks. We present a framework for modeling genetic regulatory networks in a modular yet faithful manner based on the mathematically well-founded formalism of differential inclusions. We then propose a compositional algorithm to efficiently analyze reachability properties of the model. A case study shows the potential of this approach.
Pp. 161-176