Catálogo de publicaciones - libros
Lectures on Probability Theory and Statistics: Ecole d'Eté de Probabilités de Saint-Flour XXXIII: 2003
Jean Picard (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-26069-1
ISBN electrónico
978-3-540-31537-7
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2005
Cobertura temática
Tabla de contenidos
doi: 10.1007/11429579_1
Favorite Points, Cover Times and Fractals
Amir Dembo; Tadahisa Funaki
In this course we follow recent advances in the study of the fractal nature of certain random sets, emphasizing the methods used to obtain such results. We focus on some of the fine properties of the sample path of the most basic stochastic processes such as simple random walks, Brownian motion, and symmetric stable processes. As we shall see, probability on trees inspires many of our proofs, with trees used to model the relevant correlation structure. Along the way we also mention quite a few challenging open research problems. Among the methods that will be detailed here are
Palabras clave: Brownian Motion; Cover Time; Simple Random Walk; Strong Markov Property; Occupation Measure.
Pp. 1-101
doi: 10.1007/11429579_2
Stochastic Interface Models
Amir Dembo; Tadahisa Funaki
In these notes we try to review developments in the last decade of the theory on stochastic models for interfaces arising in two phase system, mostly on the so-called ⊸φ interface model. We are, in particular, interested in the scaling limits which pass from the microscopic models to macroscopic level. Such limit procedures are formulated as classical limit theorems in probability theory such as the law of large numbers, the central limit theorem and the large deviation principles.
Palabras clave: Ising Model; Young Diagram; Gibbs Measure; Interface Model; Height Variable.
Pp. 103-274