Catálogo de publicaciones - libros

Compartir en
redes sociales


Phaeocystis, major link in the biogeochemical cycling of climate-relevant elements

M. A. van Leeuwe ; J. Stefels ; S. Belviso ; C. Lancelot ; P. G. Verity ; W. W. C. Gieskes (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Biogeosciences; Oceanography; Microbiology; Ecosystems; Eukaryotic Microbiology; Freshwater & Marine Ecology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-6213-1

ISBN electrónico

978-1-4020-6214-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media B.V. 2007

Cobertura temática

Tabla de contenidos

Introduction

Maria van Leeuwe

Palabras clave: Biogeochemical Cycle; Microalgal Species; Coastal Eutrophication; Retention System; Mance Liquid Chromatography.

Pp. 1-2

A taxonomic review of the genus Phaeocystis

Linda Medlin; Adriana Zingone

Phaeocystis is recognized both as a nuisance and as an ecologically important phytoplankton species. Its polymorphic life cycle with both colonial and flagellated cells causes many taxonomic problems. Sequence variation among 22 isolates representing a global distribution of the genus has been compared using three molecular markers. The ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) spacer is too conserved to resolve species. The most conserved 18S ribosomal deoxyribonucleic acid (rDNA) analysis suggests that an undescribed unicellular Phaeocystis sp. (isolate PLY559) is a sister taxon to the Mediterranean unicellular Phaeocystis jahnii; this clade branched prior to the divergence of all other Phaeocystis species, including the colonial ones. The internal transcribed spacer (ITS) region shows sufficient variation that some spatial population structure can be recovered, at least in P. antarctica . P. globosa and P. pouchetii have multiple different ITS copies, suggestive of cryptic species that are still able to hybridize. A molecular clock has been constructed that estimates the divergence of the cold water colonial forms from the warm-water colonial forms to be about 30 Ma and the divergence of P. antarctica and P. pouchetii to be about 15 Ma. A short description of the colonial stage and the flagellated stage for each formally recognized species is provided. Morphological information is also provided on a number of undescribed species. These include the strain Ply 559, consisting of non-colonial cells with peculiar tubular extrusomes, a second non-colonial species from the north western Mediterranean Sea producing a lot of mucus, and a colonial species with scale-less flagellates found in Italian waters. In addition, three flagellated morphotypes with scales different from those of P. antarctica were reported in the literature from Antarctic waters. The picture emerging from both molecular and morphological data is that the number of species in the genus is still underestimated and that cryptic or pseudocryptic diversity requires a sound assessment in future research of this genus. Based on all published observations, an emended description of the genus is provided.

Palabras clave: Molecular clock; ; ; ; ; ; ; rDNA analysis.

Pp. 3-18

Methods used to reveal genetic diversity in the colony-forming prymnesiophytes Phaeocystis antarctica, P. globosa and P. pouchetii—preliminary results

Steffi Gaebler; Paul K. Hayes; Linda K. Medlin

Previous work on the genetic diversity of Phaeocystis used ribosomal DNA and internal transcribed spacer (ITS) sequence analyses to show that there is substantial inter- and intraspecific variation within the genus. First attempts to trace the biogeographical history of strains in Antarctic coastal waters were based on a comparison of ITS sequences. To gain deeper insights into the population structure and bloom dynamics of this microalga it is necessary to quantify the genetic diversity within populations of P. antarctica from different locations (i.e., each of the three major gyres in the Antarctic continental waters) and to calculate the gene flow between them. Here we describe methods to quantify genetic diversity and our preliminary results for P. antarctica in comparison to two other colonial species: P. globosa and P. pouchetii . For this study of genetic diversity, two fingerprinting techniques were used. First, amplified fragment-length polymorphisms (AFLPs) were established as a pre-screening tool to assess clone diversity and to select divergent clones prior to physiological investigations. Second, the more-powerful microsatellite markers were established to assess population structure and biogeography more accurately. Results show differences in the AFLP patterns between isolates of P. antarctica from different regions, and that a wide variety of microsatellite motifs could be obtained from the three Phaeocystis species.

Palabras clave: AFLP; Microsatellite marker; ; ; ; .

Pp. 19-27

The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology

Véronique Rousseau; Marie-Josèphe Chrétiennot-Dinet; Anita Jacobsen; Peter Verity; Stuart Whipple

Despite numerous investigations, the number and role of morphotypes involved in the life cycle of Phaeocystis species remain under debate. This is partly due to the application of different methodologies such as light, transmission, scanning electron microscopy and flow cytometry on specific samples. This heterogeneity of approaches results in the incomplete morphometric description of the different cell types existing within one species according to relevant criteria and the indetermination of the ploidy level of each observed stage. We review here the different morphotypes observed within each of the six Phaeocystis species recognized up to now. Four different cell types have been observed. In common to all six species is the occurrence of a scaly flagellate producing star-forming filaments (all species except P. jahnii ) or not ( P. globosa and P. jahnii ). In three colony-forming species, P. globosa , P. pouchetii and P. antarctica , three morphotypes are observed: a flagellate with scales and filaments, a colonial cell, and a flagellate devoid of scales and filaments. In the non-colony-forming species, P. scrobiculata and P. cordata , only flagellates with scales and filaments have been observed. While suspected in P. pouchetii and P. antarctica , a haploid–diploid life cycle has only been evidenced for P. globosa . The two main prominent features of this cycle are that sexuality is prevalent in colony bloom formation and termination and that two types of vegetative reproduction exist. The ecological relevance of alternating haploid and diploid stages is not clearly apparent on the basis of existing ecological studies.

Palabras clave: Ecological niche; Haploid–diploid; Life cycle stages; Morphotype; species; Sexual processes.

Pp. 29-47

Phaeocystis colony distribution in the North Atlantic Ocean since 1948, and interpretation of long-term changes in the Phaeocystis hotspot in the North Sea

W. W. C. Gieskes; S. C. Leterme; H. Peletier; M. Edwards; P. C. Reid

Monitoring of Phaeocystis since 1948 during the Continuous Plankton Recorder survey indicates that over the last 5.5 decades the distribution of its colonies in the North Atlantic Ocean was not restricted to neritic waters: occurrence was also recorded in the open Atlantic regions sampled, most frequently in the spring. Apparently, environmental conditions in open ocean waters, also those far offshore, are suitable for complete lifecycle development of colonies (the only stage recorded in the survey). In the North Sea the frequency of occurrence was also highest in spring. Its southeastern part was the Phaeocystis abundance hotspot of the whole area covered by the survey. Frequency was especially high before the 1960s and after the 1980s, i.e., in the periods when anthropogenic nutrient enrichment was relatively low. Changes in eutrophication have obviously not been a major cause of long-term Phaeocystis variation in the southeastern North Sea, where total phytoplankton biomass was related significantly to river discharge. Evidence is presented for the suggestion that Phaeocystis abundance in the southern North Sea is to a large extent determined by the amount of Atlantic Ocean water flushed in through the Dover Strait. Since Phaeocystis plays a key role in element fluxes relevant to climate the results presented here have implications for biogeochemical models of cycling of carbon and sulphur. Sea-to-air exchange of CO_2 and dimethyl sulphide (DMS) has been calculated on the basis of measurements during single-year cruises. The considerable annual variation in phytoplankton and in its Phaeocystis component reported here does not warrant extrapolation of such figures.

Palabras clave: Annual variation; North Sea hotspot; North Atlantic-wide; .

Pp. 49-60

Photosynthetic responses in Phaeocystis antarctica towards varying light and iron conditions

M. A. van Leeuwe; J. Stefels

The effects of iron limitation on photoacclimation to a dynamic light regime were studied in Phaeocystis antarctica . Batch cultures were grown under a sinusoidal light regime, mimicking vertical mixing, under both iron-sufficient and -limiting conditions. Iron-replete cells responded to changes in light intensity by rapid xanthophyll cycling. Maximum irradiance coincided with maximum ratios of diatoxanthin/diadinoxanthin (dt/dd). The maximum quantum yield of photosynthesis ( F _ v / F _ m ) was negatively related to both irradiance and dt/dd. Full recovery of F _ v / F _ m by the end of the light period suggested successful photoacclimation. Iron-limited cells displayed characteristics of high light acclimation. The ratio of xanthophyll pigments to chlorophyll a was three times higher compared to iron-replete cells. Down-regulation of photosynthetic activity was moderated. It is argued that under iron limitation cells maintain a permanent state of high energy quenching to avoid photoinhibition during exposure to high irradiance. Iron-limited cells could maintain a high growth potential due to an increased absorption capacity as recorded by in vivo absorption, which balanced a decrease in F _ v / F _ m . The increase in the chlorophyll a -specific absorption cross section was related to an increase in carotenoid pigments and a reduction in the package effect. These experiments show that P. antarctica can acclimate successfully to conditions as they prevail in the Antarctic ocean, which may explain the success of this species.

Palabras clave: Fluorescence; Iron; Light; ; Pigments; Xanthophyll cycling.

Pp. 61-70

Effects of iron concentration on pigment composition in Phaeocystis antarctica grown at low irradiance

G. R. DiTullio; N. Garcia; S. F. Riseman; P. N. Sedwick

Interpretation of photosynthetic pigment data using iterative programs such as CHEMTAX are widely used to examine algal community structure in the surface ocean. The accuracy of such programs relies on understanding the effects of environmental parameters on the pigment composition of taxonomically diverse algal groups. Phaeocystis antarctica is an important contributor to total autotrophic production and the biogeochemical cycling of carbon and sulfur in the Southern Ocean. Here we report the results of a laboratory culture experiment in which we examined the effects of ambient dissolved iron concentration on the pigment composition of colonial P. antarctica , using a new P. antarctica strain isolated from the southern Ross Sea in December 2003. Low-iron (<0.2 nM dissolved Fe) filtered Ross Sea seawater was used to prepare the growth media, thus allowing sub-nanomolar iron additions without the use of EDTA to control dissolved iron concentrations. The experiment was conducted at relatively low irradiance (~20 μE m^−2 s^−1), with P. antarctica primarily present in the colonial form—conditions that are typical of the southern Ross Sea during austral spring. Relative to the iron-limited control treatments (0.22 nM dissolved Fe), iron addition mediated a decrease in the ratio of 19′-hexanoyloxyfucoxanthin to chlorophyll a , and an increase in the ratio of fucoxanthin to chlorophyll a . Our results also suggest that the ratio of 19′-hexanoyloxyfucoxanthin to chlorophyll c_3 (Hex:Chl c_3 ratio) may be a characteristic physiological indicator for the iron-nutritional status of colonial P. antarctica , with higher Hex:Chl c_3 ratios (>3) indicative of Fe stress. We also observed that the ratio of fucoxanthin to 19′-hexanoyloxyfucoxanthin (Fuco:Hex ratio) was highly correlated ( r ^2 = 0.82) with initial dissolved Fe concentration, with Fuco:Hex ratios <0.05 measured under iron-limited conditions (dissolved Fe <0.45 nM). Our results corroborate and extend the results of previous experimental studies, and, combined with pigment measurements from the southern Ross Sea, are consistent with the hypothesis that the interconversion of fucoxanthin and 19′-hexanoyloxyfucoxanthin by colonial P. antarctica is used as a photo-protective or light-harvesting mechanism, according to the availability of dissolved iron.

Palabras clave: Iron; ; Pigments; Ross Sea.

Pp. 71-81

Evidence for high iron requirements of colonial Phaeocystis antarctica at low irradiance

P. N. Sedwick; N. S. Garcia; S. F. Riseman; C. M. Marsay; G. R. DiTullio

We have carried out field and laboratory experiments to examine the iron requirements of colonial Phaeocystis antarctica in the Ross Sea. In December 2003, we performed an iron/light-manipulation bioassay experiment in the Ross Sea polynya, using an algal assemblage dominated by colonial Phaeocystis antarctica , collected from surface waters with an ambient dissolved Fe concentration of ~0.4 nM. Results from this experiment suggest that P. antarctica growth rates were enhanced at high irradiance (~50% of incident surface irradiance) but were unaffected by iron addition, and that elevated irradiance mediated a significant decrease in cellular chlorophyll a content. We also conducted a laboratory iron dose–response bioassay experiment using a unialgal, non-axenic strain of colonial P. antarctica and low-iron (<0.2 nM) filtered seawater, both collected from the Ross Sea polynya in December 2003. By using rigorous trace-metal clean techniques, we performed this dose–response iron-addition experiment at ~0°C without using organic chelating reagents to control dissolved iron levels. At the relatively low irradiance of this experiment (~20 μE m^−2 s^−1), estimated nitrate-specific growth rate as a function of dissolved iron concentration can be described by a Monod relationship, yielding a half-saturation constant with respect to growth of 0.45 nM dissolved iron. This value is relatively high compared to reported estimates for other Antarctic phytoplankton. Our results suggest that seasonal changes in the availability of both iron and light play critical roles in limiting the growth and biomass of colonial Phaeocystis antarctica in the Ross Sea polynya.

Palabras clave: Iron; Light; ; Ross Sea.

Pp. 83-97

The carbohydrates of Phaeocystis and their degradation in the microbial food web

Anne-Carlijn Alderkamp; Anita G. J. Buma; Marion van Rijssel

The ubiquity and high productivity associated with blooms of colonial Phaeocystis makes it an important contributor to the global carbon cycle. During blooms organic matter that is rich in carbohydrates is produced. We distinguish five different pools of carbohydrates produced by Phaeocystis . Like all plants and algal cells, both solitary and colonial cells produce (1) structural carbohydrates, (hetero) polysaccharides that are mainly part of the cell wall, (2) mono- and oligosaccharides, which are present as intermediates in the synthesis and catabolism of cell components, and (3) intracellular storage glucan. Colonial cells of Phaeocystis excrete (4) mucopolysaccharides, heteropolysaccharides that are the main constituent of the mucous colony matrix and (5) dissolved organic matter (DOM) rich in carbohydrates, which is mainly excreted by colonial cells. In this review the characteristics of these pools are discussed and quantitative data are summarized. During the exponential growth phase, the ratio of carbohydrate-carbon (C) to particulate organic carbon (POC) is approximately 0.1. When nutrients are limited, Phaeocystis blooms reach a stationary growth phase, during which excess energy is stored as carbohydrates. This so-called overflow metabolism increases the ratio of carbohydrate-C to POC to 0.4–0.6 during the stationary phase, leading to an increase in the C/N and C/P ratios of Phaeocystis organic matter. Overflow metabolism can be channeled towards both glucan and mucopolysaccharides. Summarizing the available data reveals that during the stationary phase of a bloom glucan contributes 0–51% to POC, whereas mucopolysaccharides contribute 5–60%. At the end of a bloom, lysis of Phaeocystis cells and deterioration of colonies leads to a massive release of DOM rich in glucan and mucopolysaccharides. Laboratory studies have revealed that this organic matter is potentially readily degradable by heterotrophic bacteria. However, observations in the field of accumulation of DOM and foam indicate that microbial degradation is hampered. The high C/N and C/P ratios of Phaeocystis organic matter may lead to nutrient limitation of microbial degradation, thereby prolonging degradation times. Over time polysaccharides tend to self-assemble into hydrogels. This may have a profound effect on carbon cycling, since hydrogels provide a vehicle to move DOM up the size spectrum to sizes subject to sedimentation. In addition, it changes the physical nature and microscale structure of the organic matter encountered by bacteria which may affect the degradation potential of the Phaeocystis organic matter.

Palabras clave: Carbohydrates; Glucan; Hydrogels; Mucilage; ; TEP.

Pp. 99-118

The role of iron in the bacterial degradation of organic matter derived from Phaeocystis antarctica

S. Becquevort; C. Lancelot; V. Schoemann

In high-nutrient low-chlorophyll areas, bacterial degradation of organic matter may be iron-limited. The response of heterotrophic bacteria to Fe addition may be directly controlled by Fe availability and/or indirectly controlled through the effect of enhanced phytoplankton productivity and the subsequent supply of organic matter suitable for bacteria. In the present study, the role of Fe on bacterial carbon degradation was investigated through regrowth experiments by monitoring bacterial response to organic substrates derived from Phaeocystis antarctica cultures set up in <1 nM Fe (LFe) and in Fe-amended (HFe) Antarctic seawater. Results showed an impact of Fe addition on the morphotype dominance (colonies vs. single cells) of P. antarctica and on the quality of Phaeocystis -derived organic matter. Fe addition leaded to a decrease of C/N ratio of Phaeocystis material. The bacterial community composition was modified as observed from denaturing gradient gel electrophoresis (DGGE) profiles in LFe as compared to HFe bioassays. The percentage of active bacteria as well as their specific metabolic activities (ectoenzymatic hydrolysis, growth rates and bacterial growth efficiency) were enhanced in HFe bioassays. As a consequence, the lability of Phaeocystis -derived organic matter was altered, i.e., after seven days more than 90% was degraded in HFe and only 9% (dissolved) and 55% (total) organic carbon were degraded in LFe bioassays. By inducing increased bacterial degradation and preventing the accumulation of dissolved organic carbon, the positive effect of Fe supply on the carbon biological pump may partly be counteracted.

Palabras clave: Bacterioplankton; Iron; Organic matter; ; Remineralisation.

Pp. 119-135