Catálogo de publicaciones - libros
Kernel Based Algorithms for Mining Huge Data Sets: Supervised, Semi-supervised, and Unsupervised Learning
Te-Ming Huang Vojislav Kecman Ivica Kopriva
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Data Mining and Knowledge Discovery; Appl.Mathematics/Computational Methods of Engineering; Artificial Intelligence (incl. Robotics)
Disponibilidad
| Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-31681-7
ISBN electrónico
978-3-540-31689-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Tabla de contenidos
Introduction
Palabras clave: Learning Algorithm; Independent Component Analysis; Hyperspectral Image; Independent Component Analysis; Label Data.
Pp. 1-9
Support Vector Machines in Classification and Regression — An Introduction
Palabras clave: Support Vector Machine; Training Data; Support Vector; Feature Space; Input Space.
Pp. 11-60
Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets: Theory and Performance
Palabras clave: Equality Constraint; Decision Function; Kernel Matrix; Bias Term; Sequential Minimal Optimization.
Pp. 61-95
Feature Reduction with Support Vector Machines and Application in DNA Microarray Analysis
Palabras clave: Vasoactive Intestinal Peptide; Follicular Lymphoma; Gene Ranking; Recursive Feature Elimination; Preprocessing Procedure.
Pp. 97-123
Semi-supervised Learning and Applications
Palabras clave: Label Data; Unlabeled Data; Consistency Method; Label Point; Manifold Approach.
Pp. 125-173
Unsupervised Learning by Principal and Independent Component Analysis
Palabras clave: Principal Component Analysis; Mutual Information; Independent Component Analysis; Speech Signal; Unsupervised Learn.
Pp. 175-208