Catálogo de publicaciones - libros

Compartir en
redes sociales


Kernel Based Algorithms for Mining Huge Data Sets: Supervised, Semi-supervised, and Unsupervised Learning

Te-Ming Huang Vojislav Kecman Ivica Kopriva

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Data Mining and Knowledge Discovery; Appl.Mathematics/Computational Methods of Engineering; Artificial Intelligence (incl. Robotics)

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-31681-7

ISBN electrónico

978-3-540-31689-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Tabla de contenidos

Introduction

Palabras clave: Learning Algorithm; Independent Component Analysis; Hyperspectral Image; Independent Component Analysis; Label Data.

Pp. 1-9

Support Vector Machines in Classification and Regression — An Introduction

Palabras clave: Support Vector Machine; Training Data; Support Vector; Feature Space; Input Space.

Pp. 11-60

Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets: Theory and Performance

Palabras clave: Equality Constraint; Decision Function; Kernel Matrix; Bias Term; Sequential Minimal Optimization.

Pp. 61-95

Feature Reduction with Support Vector Machines and Application in DNA Microarray Analysis

Palabras clave: Vasoactive Intestinal Peptide; Follicular Lymphoma; Gene Ranking; Recursive Feature Elimination; Preprocessing Procedure.

Pp. 97-123

Semi-supervised Learning and Applications

Palabras clave: Label Data; Unlabeled Data; Consistency Method; Label Point; Manifold Approach.

Pp. 125-173

Unsupervised Learning by Principal and Independent Component Analysis

Palabras clave: Principal Component Analysis; Mutual Information; Independent Component Analysis; Speech Signal; Unsupervised Learn.

Pp. 175-208