Catálogo de publicaciones - libros

Compartir en
redes sociales


Basis and Treatment of Cardiac Arrhythmias

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Pharmacology/Toxicology; Cardiology; Human Physiology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-24967-2

ISBN electrónico

978-3-540-29715-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Tabla de contenidos

History of Arrhythmias

M.J. Janse; M.R. Rosen

A historical overview is given on the techniques to record the electrical activity of the heart, some anatomical aspects relevant for the understanding of arrhythmias, general mechanisms of arrhythmias, mechanisms of some specific arrhythmias and nonpharmacological forms of therapy. The unravelling of arrhythmia mechanisms depends, of course, on the ability to record the electrical activity of the heart. It is therefore no surprise that following the construction of the string galvanometer by Einthoven in 1901, which allowed high-fidelity recording of the body surface electrocardiogram, the study of arrhythmias developed in an explosive way. Still, papers from McWilliam (1887), Garrey (1914) and Mines (1913, 1914) in which neither mechanical nor electrical activity was recorded provided crucial insights into re-entry as a mechanism for atrial and ventricular fibrillation, atrioventricular nodal re-entry and atrioventricular re-entrant tachycardia in hearts with an accessory atrioventricular connection. The components of the electrocardiogram, and of extracellular electrograms directly recorded from the heart, could only be well understood by comparing such registrations with recordings of transmembrane potentials. The first intracellular potentials were recorded with microelectrodes in 1949 by Coraboeuf and Weidmann. It is remarkable that the interpretation of extracellular electrograms was still controversial in the 1950s, and it was not until 1962 that Dower showed that the transmembrane action potential upstroke coincided with the steep negative deflection in the electrogram. For many decades, mapping of the spread of activation during an arrhythmia was performed with a “roving” electrode that was subsequently placed on different sites on the cardiac surface with a simultaneous recording of another signal as time reference. This method could only provide reliable information if the arrhythmia was strictly regular. When multiplexing systems became available in the late 1970s, and optical mapping in the 1980s, simultaneous registrations could be made from many sites. The analysis of atrial and ventricular fibrillation then became much more precise. The old question whether an arrhythmia is due to a focal or a re-entrant mechanism could be answered, and for atrial fibrillation, for instance, the answer is that both mechanisms may be operative. The road from understanding the mechanism of an arrhythmia to its successful therapy has been long: the studies of Mines in 1913 and 1914, microelectrode studies in animal preparations in the 1960s and 1970s, experimental and clinical demonstrations of initiation and termination of tachycardias by premature stimuli in the 1960s and 1970s, successful surgery in the 1980s, the development of external and implantable defibrillators in the 1960s and 1980s, and finally catheter ablation at the end of the previous century, with success rates that approach 99% for supraventricular tachycardias.

Pp. 1-39

Pacemaker Current and Automatic Rhythms: Toward a Molecular Understanding

I.S. Cohen; R.B. Robinson

The ionic basis of automaticity in the sinoatrial node and His-Purkinje system, the primary and secondary cardiac pacemaking regions, is discussed. Consideration is given to potential targets for pharmacologic or genetic therapies of rhythm disorders. An ideal target would be an ion channel that functions only during diastole, so that action potential repolarization is not affected, and one that exhibits regional differences in expression and/or function so that the primary and secondary pacemakers can be selectively targeted. The so-called pacemaker current, , generated by the HCN gene family, best fits these criteria. The biophysical and molecular characteristics of this current are reviewed, and progress to date in developing selective pharmacologic agents targeting and in using gene and cell-based therapies to modulate the current are reviewed.

Pp. 41-71

Proarrhythmia

D.M. Roden; M.E. Anderson

The concept that antiarrhythmic drugs can exacerbate the cardiac rhythm disturbance being treated, or generate entirely new clinical arrhythmia syndromes, is not new. Abnormal cardiac rhythms due to digitalis or quinidine have been recognized for decades. This phenomenon, termed “proarrhythmia,” was generally viewed as a clinical curiosity, since it was thought to be rare and unpredictable. However, the past 20 years have seen the recognition that proarrhythmia is more common than previously appreciated in certain populations, and can in fact lead to substantially increased mortality during long-term antiarrhythmic therapy. These findings, in turn, have moved proarrhythmia from a clinical curiosity to the centerpiece of antiarrhythmic drug pharmacology in at least two important respects. clinicians now select antiarrhythmic drug therapy in a particular patient not simply to maximize efficacy, but very frequently to minimize the likelihood of proarrhythmia. avoiding proarrhythmia has become a key element of contemporary new antiarrhythmic drug development. Further, recognition of the magnitude of the problem has led to important advances in understanding basic mechanisms.While the phenomenon of proarrhythmia remains unpredictable in an individual patient, it can no longer be viewed as “idiosyncratic.” Rather, gradations of risk can be assigned based on the current understanding of mechanisms, and these will doubtless improve with ongoing research at the genetic, molecular, cellular, whole heart, and clinical levels.

Pp. 73-97

Cardiac Na+ Channels as Therapeutic Targets for Antiarrhythmic Agents

I.W. Glaaser; C.E. Clancy

There are many factors that influence drug block of voltage-gated Na+ channels (VGSC). Pharmacological agents vary in conformation, charge, and affinity. Different drugs have variable affinities to VGSC isoforms, and drug efficacy is affected by implicit tissue properties such as resting potential, action potential morphology, and action potential frequency. The presence of polymorphisms and mutations in the drug target can also influence drug outcomes. While VGSCs have been therapeutic targets in the management of cardiac arrhythmias, their potential has been largely overshadowed by toxic side effects. Nonetheless, many VGSC blockers exhibit inherent voltage- and use-dependent properties of channel block that have recently proven useful for the diagnosis and treatment of genetic arrhythmias that arise from defects in Na+ channels and can underlie idiopathic clinical syndromes. These defective channels suggest themselves as prime targets of disease and perhaps even mutation specific pharmacological interventions.

Pp. 99-121

Structural Determinants of Potassium Channel Blockade and Drug-Induced Arrhythmias

X.H.T. Wehrens

Cardiac K channels play an important role in the regulation of the shape and duration of the action potential. They have been recognized as targets for the actions of neurotransmitters, hormones, and anti-arrhythmic drugs that prolong the action potential duration (APD) and increase refractoriness. However, pharmacological therapy, often for the purpose of treating syndromes unrelated to cardiac disease, can also increase the vulnerability of some patients to life-threatening rhythm disturbances. This may be due to an underlying propensity stemming from inherited mutations or polymorphisms, or structural abnormalities that provide a substrate allowing for the initiation of arrhythmic triggers. A number of pharmacological agents that have proved useful in the treatment of allergic reactions, gastrointestinal disorders, and psychotic disorders, among others, have been shown to reduce repolarizing K currents and prolong the Q-T interval on the electrocardiogram. Understanding the structural determinants of K channel blockade might provide new insights into the mechanism and rate-dependent effects of drugs on cellular physiology. Drug-induced disruption of cellular repolarization underlies electrocardiographic abnormalities that are diagnostic indicators of arrhythmia susceptibility.

Pp. 123-157

Sodium Calcium Exchange as a Target for Antiarrhythmic Therapy

K.R. Sipido; A. Varro; D. Eisner

In search of better antiarrhythmic therapy, targeting the Na/Ca exchanger is an option to be explored. The rationale is that increased activity of the Na/Ca exchanger has been implicated in arrhythmogenesis in a number of conditions. The evidence is strong for triggered arrhythmias related to Ca overload, due to increased Na load or during adrenergic stimulation; the Na/Ca exchanger may be important in triggered arrhythmias in heart failure and in atrial fibrillation. There is also evidence for a less direct role of the Na/Ca exchanger in contributing to remodelling processes. In this chapter, we review this evidence and discuss the consequences of inhibition of Na/Ca exchange in the perspective of its physiological role in Ca homeostasis. We summarize the current data on the use of available blockers of Na/Ca exchange and propose a framework for further study and development of such drugs. Very selective agents have great potential as tools for further study of the role the Na/Ca exchanger plays in arrhythmogenesis. For therapy, they may have their specific indications, but they carry the risk of increasing Ca load of the cell. Agentswith a broader action that includes Ca channel blockmay have advantages in other conditions, e.g. with Ca overload. Additional actions such as block of K channels, which may be unwanted in e.g. heart failure, may be used to advantage as well.

Pp. 159-199

A Role for Calcium/Calmodulin-Dependent Protein Kinase II in Cardiac Disease and Arrhythmia

T.J. Hund; Y. Rudy

More than 20 years have passed since the discovery that a collection of specific calcium/calmodulin-dependent phosphorylation events is the result of a single multifunctional kinase. Since that time, we have learned a great deal about this multifunctional and ubiquitous kinase, known today as calcium/calmodulin-dependent protein kinase II (CaMKII). CaMKII is interesting not only for its widespread distribution and broad specificity but also for its biophysical properties, most notably its activation by the critical second messenger complex calcium/calmodulin and its autophosphorylating capability. A central role for CaMKII has been identified in regulating a diverse array of fundamental cellular activities. Furthermore, altered CaMKII activity profoundly impacts function in the brain and heart. Recent findings that CaMKII expression in the heart changes during hypertrophy, heart failure,myocardial ischemia, and infarction suggest that CaMKII may be a viable therapeutic target for patients suffering from common forms of heart disease.

Pp. 201-220

AKAPs as Antiarrhythmic Targets?

S.O. Marx; J. Kurokawa

Phosphorylation of ion channels plays a critical role in the modulation and amplification of biophysical signals. Kinases and phosphatases have broad substrate recognition sequences. Therefore, the targeting of kinases and phosphatases to specific sites enhances the regulation of diverse signaling events. Ion channel macromolecular complexes can be formed by the association of A-kinase anchoring proteins(AKAPs) or other adaptor proteins directly with the channel. The discovery that leucine/isoleucine zippers play an important role in the recruitment of phosphorylation-modulatory proteins to certain ion channels has permitted the elucidation of specific ion channel macromolecular complexes. Disruption of signaling complexes by genetic defects can lead to abnormal physiological function. This chapter will focus on evidence supporting the concept that ion channel macromolecular complex formation plays an important role in regulating channel function in normal and diseased states. Moreover, we demonstrate that abnormal complex formation may directly lead to abnormal channel regulation by cellular signaling pathways, potentially leading to arrhythmogenesis and cardiac dysfunction.

Pp. 221-233

β-Blockers as Antiarrhythmic Agents

S.G. Priori; C. Napolitano; M. Cerrone

The integration between molecular biology and clinical practice requires the achievement of fundamental steps to link basic science to diagnosis and management of patients. In the last decade, the study of genetic bases of human diseases has achieved several milestones, and it is now possible to apply the knowledge that stems fromthe identification of the genetic substrate of diseases to clinical practice. The first step along the process of linking molecular biology to clinical medicine is the identification of the genetic bases of inherited diseases. After this important goal is achieved, it becomes possible to extend research to understand the functional impairments of mutant protein(s) and to link them to clinical manifestations (genotype-phenotype correlation). In genetically heterogeneous diseases, it may be possible to identify locus-specific risk stratification and management algorithms. Finally, the most ambitious step in the study of genetic disease is to discover a novel pharmacological therapy targeted at correcting the inborn defect (locus-specific therapy) or even to “cure” the DNA abnormality by replacing the defective gene with gene therapy. At present, this curative goal has been successful only for very few diseases. In the field of inherited arrhythmogenic diseases, several genes have been discovered, and genetics is now emerging as a source of information contributing not only to a better diagnosis but also to risk stratification and management of patients. The functional characterization of mutant proteins has opened new perspectives about the possibility of performing genespecific or mutation-specific therapy. In this chapter, we will briefly summarize the genetic bases of inherited arrhythmogenic conditions and we will point out how the information derived from molecular genetics has influenced the “optimal use of traditional therapies” and has paved the way to the development of gene-specific therapy.

Pp. 235-266

Experimental Therapy of Genetic Arrhythmias: Disease-Specific Pharmacology

S.G. Priori; C. Napolitano; M. Cerrone

The integration between molecular biology and clinical practice requires the achievement of fundamental steps to link basic science to diagnosis and management of patients. In the last decade, the study of genetic bases of human diseases has achieved several milestones, and it is now possible to apply the knowledge that stems from the identification of the genetic substrate of diseases to clinical practice. The first step along the process of linking molecular biology to clinical medicine is the identification of the genetic bases of inherited diseases. After this important goal is achieved, it becomes possible to extend research to understand the functional impairments of mutant protein(s) and to link them to clinical manifestations (genotype-phenotype correlation). In genetically heterogeneous diseases, it may be possible to identify locus-specific risk stratification and management algorithms. Finally, the most ambitious step in the study of genetic disease is to discover a novel pharmacological therapy targeted at correcting the inborn defect (locus-specific therapy) or even to “cure” the DNA abnormality by replacing the defective gene with gene therapy. At present, this curative goal has been successful only for very few diseases. In the field of inherited arrhythmogenic diseases, several genes have been discovered, and genetics is now emerging as a source of information contributing not only to a better diagnosis but also to risk stratification and management of patients. The functional characterization of mutant proteins has opened new perspectives about the possibility of performing genespecific or mutation-specific therapy. In this chapter, we will briefly summarize the genetic bases of inherited arrhythmogenic conditions and we will point out how the information derived from molecular genetics has influenced the “optimal use of traditional therapies” and has paved the way to the development of gene-specific therapy.

Pp. 267-286