Catálogo de publicaciones - libros

Compartir en
redes sociales


Bacterial Virulence Factors and Rho GTPases

Patrice Boquet ; Emmanuel Lemichez (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Virology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-23865-2

ISBN electrónico

978-3-540-27511-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Cobertura temática

Tabla de contenidos

Bacterial Virulence Strategies That Utilize Rho GTPases

B. B. Finlay

The ability to modify central host cellular functions is a major advantage to many bacterial pathogens that use such strategies as part of their virulence mechanisms. Small GTPases, including Rho GTPases, make particularly attractive targets for pathogens because of their central roles in modulating cellular functions such as cytoskeletal control. Such modifications of these GTPases can include direct chemical modification of the GTPase or interfacing with some of the regulatory elements associated with GTPase control. Pathogens use these alterations in GTPase functions for a variety of functions, including killing the host cell, mediating bacterial uptake into the host cell (invasion), reprogramming actin to form a lesion in host cells underlying adherent bacteria, to mediate intracellular survival by affecting intracellular trafficking, or to provide polymerized actin mechanisms to propel microbes around inside host cells and into adjacent cells. Collectively, these examples represent many key microbial virulence mechanisms that have led to a much deeper understanding of both microbial pathogens and GTPase functions.

Pp. 1-10

Extracellular Bacterial Pathogens and Small GTPases of the Rho Family: An Unexpected Combination

G. Duménil; X. Nassif

Even in the case of extracellular bacterial pathogens, it is becoming increasingly clear that successful colonization does not limit itself to passive attachment on the surface of human cells; a dialogue takes place between bacteria and infected cells. These pathogens modulate cellular functions to their advantage, leading to survival and proliferation at the cell surface. Furthermore, there is increasing evidence that a variety of extracellular pathogens activate small GTPases of the Rho family during adhesion, placing these regulators at the center of the interaction between these bacteria and their infected host.

Pp. 11-28

Triggered Phagocytosis by : Bacterial Molecular Mimicry of RhoGTPase Activation/Deactivation

M. C. Schlumberger; W.-D. Hardt

Typhimurium uses the type III secretion system encoded in the pathogenicity island I (SPI-1 TTSS) to inject toxins (effector proteins) into host cells. Here, we focus on the functional mechanism of three of these toxins: SopE, SopE2, and SptP. All three effector proteins change the GTP/GDP loading state of RhoGTPases by transient interactions. SopE and SopE2 mimic eukaryotic G-nucleotide exchange factors and thereby activate RhoGTPase signaling pathways in infected host cells. In contrast, a domain of SptP inactivates RhoGTPases by mimicking the activity of eukaryotic GTPase-activating proteins. The -host cell interaction provides an excellent example for the use of molecular mimicry by bacterial pathogens.

Pp. 29-42

Regulation of Phagocytosis by Rho GTPases

F. Niedergang; P. Chavrier

Phagocytosis is the mechanism of internalization used by specialized cells such as macrophages, dendritic cells, and neutrophils to internalize, degrade, and eventually present peptides derived from particulate antigens. The phagocytic process comprises several sequential and complex events initiated by the recognition of ligands on the surface of the particles by specific receptors on the surface of the phagocytic cells. Receptor clustering at the attachment site generates a phagocytic signal that in turn leads to local polymerization of actin filaments and to particle internalization. Depending on the particles and receptors involved, it appears that the structures and mechanisms associated with particle ingestion are diverse. However, work during the past few years has highlighted the importance of small GTP-binding proteins of the Rho family in various types of phagocytosis. As reviewed here, Rho family GTPases, their activators, and their downstream effectors control the local reorganization of the actin cytoskeleton beneath bound particles.

Pp. 43-60

The Immunological Synapse and Rho GTPases

M. Deckert; C. Moon; S. Le Bras

Rho GTPases are molecular switches controlling a broad range of cellular processes including lymphocyte activation. Not surprisingly, Rho GTPases are now recognized as pivotal regulators of antigen-specific T cell activation by APCs and immunological synapse formation. This review summarizes recent advances in our understanding of how Rho GTPase-dependent pathways control T lymphocyte motility, polarization and activation.

Pp. 61-90

Rho GTPases and the Control of the Oxidative Burst in Polymorphonuclear Leukocytes

B. A. Diebold; G. M. Bokoch

Stimulation of quiescent leukocytes activates the NADPH oxidase, a membrane-associated enzyme system that generates superoxide and other reactive oxygen species (ROS) that are used to kill bacteria within the phagosome. This chapter describes this multicomponent NADPH oxidase system, one of the first cellular systems shown to be directly regulated by Rac GTPases. We present current models of NADPH oxidase regulation by Rac2 and describe how Rac2 activation controls the timing of ROS production in adherent neutrophils. The antagonistic role that Cdc42 plays as a competitor of Rac2 for binding to the cytochrome component of the NADPH oxidase is discussed as a possible mechanism for tonic regulation of ROS production during the formation of the phagosome. Finally, we briefly depict mechanisms by which invasive bacteria can alter (inhibit) NADPH oxidase function, focusing on the effects of invasive bacteria on components and assembly of the NADPH oxidase.

Pp. 91-111

Clostridial Rho-Inhibiting Protein Toxins

K. Aktories; I. Just

Rho proteins are master regulators of a large array of cellular functions, including control of cell morphology, cell migration and polarity, transcriptional activation, and cell cycle progression. They are the eukaryotic targets of various bacterial protein toxins and effectors, which activate or inactivate the GTPases. Here Rhoinactivating toxins and effectors are reviewed, including the families of large clostridial cytotoxins and C3-like transferases, which inactivate Rho GTPases by glucosylation and ADP-ribosylation, respectively.

Pp. 113-145

The Type III Cytotoxins of and That Modulate the Actin Cytoskeleton

M. R. Baldwin; J. T. Barbieri

Initial studies of how bacterial toxins modulate the actin cytoskeleton have focused primarily on the mode of action of these toxins. More recently, studies have addressed the molecular interactions of these toxins with host cell signaling pathways and how toxins modulate cellular physiology. Although each individual toxin has a unique mode of action, general themes have started to emerge between bacterial pathogens. During the course of an infection, many pathogenic bacteria produce toxins that target the actin cytoskeleton and its regulatory proteins. Toxins can either act as positive regulators promoting the assembly of filamentous actin structures or, alternatively, as negative regulators promoting actin filament disassembly. Modulation of the actin cytoskeleton facilitates various infectious processes critical for the success of the pathogen. Intracellular bacteria such as utilize toxins to promote both assembly and disassembly of the actin cytoskeleton during the infection process. Temporal regulation of toxin activities results in internalization of the bacterium by epithelial cells into specialized vacuoles permissive for growth. In contrast, utilizes actin modulating toxins to block internalization by professional antigen-presenting cells such as macrophages and dendritic cells. Modulation of the immune response through the production of actin-regulating toxins appears to be a common approach adopted by several extracellular pathogens. Thus the repertoire of actin-modifying toxins produced by various species is specifically tailored to facilitate the lifestyle of the pathogen. The presence of multiple toxins that modulate the activation state of actin shows the importance of interfering with the cytoskeleton to neutralize the host's innate immune system for the survival and growth of and .

Pp. 147-166

Modulation of Rho GTPases and the Actin Cytoskeleton by YopT of

M. Aepfelbacher; R. Zumbihl; J. Heesemann

Pathogenic species evade the innate cellular immune response by injecting antihost effector proteins ( outer proteins, Yops) into host cells through a type III secretion (TTS) apparatus. One of the six effector Yops, YopT, inactivates the small GTPase RhoA by removing the geranylgeranylated C-terminal cysteine. This cleavage results in release of RhoA from the cell membrane and subsequently in blockage of stress fiber formation. Thus YopT impairs cellular functions associated with cytoskeleton rearrangements.

Pp. 167-175

Bacterial Toxins Activating Rho GTPases

P. Munro; E. Lemichez

The CNF1 toxin is produced by some uropathogenic (UPECs) and meningitiscausing strains. It belongs to a large family of bacterial virulence factors and toxins modifying cellular regulators of the actin cytoskeleton, namely the Rho GTPases. CNF1 autonomously enters the host cell cytosol, where it catalyzes the constitutive activation of Rho GTPases by deamidation. This activation is, however, attenuated because of activated Rho protein ubiquitin-mediated proteasomal degradation. Both Rho protein activation and deactivation confer phagocytic properties on epithelial and endothelial cells, as well as epithelial cell motility and cell-cell junction dynamics. Transcriptome analysis using DNA microarray revealed that endothelial cells respond to high doses of CNF1 by launching a genetic program of host alarm. This host cell reaction to CNF1 intoxication also indicates that degradation of activated Rho proteins by the proteasome may lead to a lowering of the threshold of the intoxicated cell inflammatory response. These results are consistent with growing evidence that Rho proteins control the cell inflammatory responses. It is tempting to assume that Rho deregulation may participate in various immunological disorders also involved in cancer.

Pp. 177-190