Catálogo de publicaciones - libros

Compartir en
redes sociales


Yeasts in Food and Beverages

Amparo Querol ; Graham Fleet (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Microbiology; Applied Microbiology; Biotechnology; Food Science

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-28388-1

ISBN electrónico

978-3-540-28398-0

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Tabla de contenidos

The Commercial and Community Significance of Yeasts in Food and Beverage Production

Graham Fleet

Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.

Pp. 1-12

Taxonomic and Ecological Diversity of Food and Beverage Yeasts

Patrizia Romano; Angela Capece; Lene Jespersen

Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.

Pp. 13-53

Molecular Methods to Identify and Characterize Yeasts in Foods and Beverages

M. T. Fernández Espinar; P. Martorell; R. de Llanos; Amparo Querol

Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.

Pp. 55-82

Yeast Ecological Interactions. Yeast'Yeast, Yeast'Bacteria, Yeast'Fungi Interactions and Yeasts as Biocontrol Agents

Bennie C. Viljoen

Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.

Pp. 83-110

Physiological and Molecular Responses of Yeasts to the Environment

Graeme M. Walker; Patrick Van Dijck

Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.

Pp. 111-152

Molecular Mechanisms Involved in the Adaptive Evolution of Industrial Yeasts

Eladio Barrio; Sara S. González; Armando Arias; Carmela Belloch; Amparq Querol

Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.

Pp. 153-174

Principles and Applications of Genomics and Proteomics in the Analysis of Industrial Yeast Strains

Ursula Bond; Anders Blomberg

Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.

Pp. 175-213

Carbohydrate Metabolism

J. Richard Dickinson; Arthur L. Kruckeberg

Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.

Pp. 215-242

Yeasts as Biocatalysts

Pierre Strehaiano; Felipe Ramon-Portugal; Patricia Taillandier

Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.

Pp. 243-283

Production of Antioxidants, Aromas, Colours, Flavours, and Vitamins by Yeasts

Charles A. Abbas

Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.

Pp. 285-334