Catálogo de publicaciones - libros
Yeasts in Food and Beverages
Amparo Querol ; Graham Fleet (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Microbiology; Applied Microbiology; Biotechnology; Food Science
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-28388-1
ISBN electrónico
978-3-540-28398-0
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Cobertura temática
Tabla de contenidos
The Commercial and Community Significance of Yeasts in Food and Beverage Production
Graham Fleet
Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.
Pp. 1-12
Taxonomic and Ecological Diversity of Food and Beverage Yeasts
Patrizia Romano; Angela Capece; Lene Jespersen
Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.
Pp. 13-53
Molecular Methods to Identify and Characterize Yeasts in Foods and Beverages
M. T. Fernández Espinar; P. Martorell; R. de Llanos; Amparo Querol
Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.
Pp. 55-82
Yeast Ecological Interactions. Yeast'Yeast, Yeast'Bacteria, Yeast'Fungi Interactions and Yeasts as Biocontrol Agents
Bennie C. Viljoen
Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.
Pp. 83-110
Physiological and Molecular Responses of Yeasts to the Environment
Graeme M. Walker; Patrick Van Dijck
Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.
Pp. 111-152
Molecular Mechanisms Involved in the Adaptive Evolution of Industrial Yeasts
Eladio Barrio; Sara S. González; Armando Arias; Carmela Belloch; Amparq Querol
Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.
Pp. 153-174
Principles and Applications of Genomics and Proteomics in the Analysis of Industrial Yeast Strains
Ursula Bond; Anders Blomberg
Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.
Pp. 175-213
Carbohydrate Metabolism
J. Richard Dickinson; Arthur L. Kruckeberg
Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.
Pp. 215-242
Yeasts as Biocatalysts
Pierre Strehaiano; Felipe Ramon-Portugal; Patricia Taillandier
Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.
Pp. 243-283
Production of Antioxidants, Aromas, Colours, Flavours, and Vitamins by Yeasts
Charles A. Abbas
Statistique indérentielle d’un côté et analyse des décisions de l’autre côté ont longtemps été séparées dans les préoccupations des chercheurs et des ingénieurs. On cherchait d’abord à estimer, au mieux, les paramètres incertains des modè les : l’expression signifiait selon des critères de valeurs choisis de façon arbitraire car même si ce choix obéissait à une certaine logique du mathématicien, les considérations décisionnelles n’y avaient guère leur part. Le choix des décisions opérationnelles se faisait dans une phase ultérieure, séparée de l’inférence, et comme si les paramètres des modèles étaient parfaitement connus. Dans l’approche bayésienne, la distribution du ou des paramètres récapitule tout le savoir mobilisé pour porter un jugement à partir des données expérimentales et du savoir . Le choix d’une décision basée sur cette distribution doit faire intervenir ses conséquences, évaluées au moins sommairement (DeGroot, 1970). Une telle évaluation peut paraître difficile ou prématurée, pourtant aucun modélisateur ne travaille jamais sans idée des suites de ses jugements et propositions. Il suffit bien souvent de prendre en compte une fonction de coût forfaitaire donnant une indication très qualitative des conséquences. C’est le lien entre le jugement sur échantillon (celui qu’on a sous la main) et la prise de décision finale avec ses coûts qui fait d’ailleurs l’efficacité de la démarche bayésienne. Formellement, le choix d’une décision dans un ensemble possible implique de supporter des conséquences incertaines. Celles-ci s’expriment par une fonction de coût (, θ) conditionnée à la fois par la décision et l’état de la nature θ. Dans ce chapitre, la théorie de la décision en avenir incertain développe ce concept en l’articulant avec les éléments du modèle bayésien présenté dans le chapitre précédent. Deux exemples illustrent sa mise en œuvre pratique.
Pp. 285-334