Catálogo de publicaciones - libros
The Construction of New Mathematical Knowledge in Classroom Interaction: An Epistemological Perspective
Heinz Steinbring
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Mathematics Education; Epistemology
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-24251-4
ISBN electrónico
978-0-387-24253-8
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2005
Cobertura temática
Tabla de contenidos
General Overview Of The Book
Heinz Steinbring
Inspired by fast correlation attacks on stream ciphers, we present a stream cipher-like construction for a public-key cryptosystem whose security relies on two problems: finding a low-weight multiple of a given polynomial and a Hidden Correlation problem. We obtain a weakly secure public-key cryptosystem we call TCHo (as for Trapdoor Cipher, Hardware Oriented). Using the Fujisaki-Okamoto construction, we can build an hybrid cryptosystem, TCHo − FO, resistant against adaptive chosen ciphertext attacks.
Pp. 1-6
Overview of the First Chapter
Heinz Steinbring
Inspired by fast correlation attacks on stream ciphers, we present a stream cipher-like construction for a public-key cryptosystem whose security relies on two problems: finding a low-weight multiple of a given polynomial and a Hidden Correlation problem. We obtain a weakly secure public-key cryptosystem we call TCHo (as for Trapdoor Cipher, Hardware Oriented). Using the Fujisaki-Okamoto construction, we can build an hybrid cryptosystem, TCHo − FO, resistant against adaptive chosen ciphertext attacks.
Pp. 7-9
Theoretical Background and Starting Point
Heinz Steinbring
Inspired by fast correlation attacks on stream ciphers, we present a stream cipher-like construction for a public-key cryptosystem whose security relies on two problems: finding a low-weight multiple of a given polynomial and a Hidden Correlation problem. We obtain a weakly secure public-key cryptosystem we call TCHo (as for Trapdoor Cipher, Hardware Oriented). Using the Fujisaki-Okamoto construction, we can build an hybrid cryptosystem, TCHo − FO, resistant against adaptive chosen ciphertext attacks.
Pp. 11-56
Overview of the Second Chapter
Heinz Steinbring
Inspired by fast correlation attacks on stream ciphers, we present a stream cipher-like construction for a public-key cryptosystem whose security relies on two problems: finding a low-weight multiple of a given polynomial and a Hidden Correlation problem. We obtain a weakly secure public-key cryptosystem we call TCHo (as for Trapdoor Cipher, Hardware Oriented). Using the Fujisaki-Okamoto construction, we can build an hybrid cryptosystem, TCHo − FO, resistant against adaptive chosen ciphertext attacks.
Pp. 57-59
The Theoretical Research Question
Heinz Steinbring
Inspired by fast correlation attacks on stream ciphers, we present a stream cipher-like construction for a public-key cryptosystem whose security relies on two problems: finding a low-weight multiple of a given polynomial and a Hidden Correlation problem. We obtain a weakly secure public-key cryptosystem we call TCHo (as for Trapdoor Cipher, Hardware Oriented). Using the Fujisaki-Okamoto construction, we can build an hybrid cryptosystem, TCHo − FO, resistant against adaptive chosen ciphertext attacks.
Pp. 61-84
Overview of the Third Chapter
Heinz Steinbring
Inspired by fast correlation attacks on stream ciphers, we present a stream cipher-like construction for a public-key cryptosystem whose security relies on two problems: finding a low-weight multiple of a given polynomial and a Hidden Correlation problem. We obtain a weakly secure public-key cryptosystem we call TCHo (as for Trapdoor Cipher, Hardware Oriented). Using the Fujisaki-Okamoto construction, we can build an hybrid cryptosystem, TCHo − FO, resistant against adaptive chosen ciphertext attacks.
Pp. 85-86
Epistemology-Oriented Analyses of Mathematical Interactions
Heinz Steinbring
Inspired by fast correlation attacks on stream ciphers, we present a stream cipher-like construction for a public-key cryptosystem whose security relies on two problems: finding a low-weight multiple of a given polynomial and a Hidden Correlation problem. We obtain a weakly secure public-key cryptosystem we call TCHo (as for Trapdoor Cipher, Hardware Oriented). Using the Fujisaki-Okamoto construction, we can build an hybrid cryptosystem, TCHo − FO, resistant against adaptive chosen ciphertext attacks.
Pp. 87-178
Overview of the Fourth Chapter
Heinz Steinbring
Inspired by fast correlation attacks on stream ciphers, we present a stream cipher-like construction for a public-key cryptosystem whose security relies on two problems: finding a low-weight multiple of a given polynomial and a Hidden Correlation problem. We obtain a weakly secure public-key cryptosystem we call TCHo (as for Trapdoor Cipher, Hardware Oriented). Using the Fujisaki-Okamoto construction, we can build an hybrid cryptosystem, TCHo − FO, resistant against adaptive chosen ciphertext attacks.
Pp. 179-181
Epistemological and Communicational Conditions of Interactive Mathematical Knowledge Constructions
Heinz Steinbring
Inspired by fast correlation attacks on stream ciphers, we present a stream cipher-like construction for a public-key cryptosystem whose security relies on two problems: finding a low-weight multiple of a given polynomial and a Hidden Correlation problem. We obtain a weakly secure public-key cryptosystem we call TCHo (as for Trapdoor Cipher, Hardware Oriented). Using the Fujisaki-Okamoto construction, we can build an hybrid cryptosystem, TCHo − FO, resistant against adaptive chosen ciphertext attacks.
Pp. 183-217