Catálogo de publicaciones - libros

Compartir en
redes sociales


Reoviruses: Entry, Assembly and Morphogenesis

Polly Roy (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Virology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-30772-3

ISBN electrónico

978-3-540-30773-0

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Cobertura temática

Tabla de contenidos

Attachment and Cell Entry of Mammalian Orthoreovirus

K. M. Guglielmi; E. M. Johnson; T. Stehle; T. S. Dermody

Mammalian orthoreoviruses (reoviruses) serve as a tractable model system for studies of viral pathogenesis. Reoviruses infect virtually all mammals, but cause disease only in the very young. Prototype strains of the three reovirus serotypes differ in pathogenesis following infection of newborn mice. Reoviruses are nonenveloped, icosahedral particles that consist of ten segments of double-stranded RNA encapsidated within two protein shells, the inner core and outer capsid. High-resolution structures of individual components of the reovirus outer capsid and a single viral receptor have been solved and provide insight into the functions of these molecules in viral attachment, entry, and pathogenesis. Attachment of reovirus to target cells is mediated by the reovirus σ1 protein, a filamentous trimer that projects from the outer capsid. Junctional adhesion molecule-A is a serotype-independent receptor for reovirus, and sialic acid is a coreceptor for serotype 3 strains. After binding to receptors on the cell surface, reovirus is internalized via receptor-mediated endocytosis. Internalization is followed by stepwise disassembly of the viral outer capsid in the endocytic compartment. Uncoating events, which require acidic pH and endocytic proteases, lead to removal of major outer-capsid protein σ3, resulting in exposure of membrane-penetration mediator μ1 and a conformational change in attachment protein σ1. After penetration of endosomes by uncoated particles, the transcriptionally active viral core is released into the cytoplasm, where replication proceeds. Despite major advances in defining reovirus attachment and entry mechanisms, many questions remain. Ongoing research is aimed at understanding serotype-dependent differences in reovirus tropism, viral cell-entry pathways, the individual and corporate roles of acidic pH and proteases in viral entry, and μ1 function in membrane penetration.

Pp. 1-38

Early Steps in Rotavirus Cell Entry

S. Lopez; C. F. Arias

Rotaviruses, the leading cause of severe dehydrating diarrhea in infants and young children worldwide, are non-enveloped viruses formed by three concentric layers of protein that enclose a genome of double-stranded RNA. These viruses have a specific cell tropism in vivo, infecting primarily the mature enterocytes of the villi of the small intestine. It has been found that rotavirus cell entry is a complex multistep process, in which different domains of the rotavirus surface proteins interact sequentially with different cell surface molecules, which act as attachment and entry receptors. These recently described molecules include integrins (α2β1, αvβ3, and αxβ2) and a heat shock protein (hsc70), and have been found to be associated with cell membrane lipidmicrodomains. The requirement for several cell molecules, which might need to be present and organized in a precise fashion, could explain the cell and tissue tropism of these viruses. This review focuses on recent data describing the interactions between the virus and its receptors, the role of lipid microdomains in rotavirus infection, and the possible mechanism of rotavirus cell entry.

Pp. 39-66

Early Steps in Avian Reovirus Morphogenesis

J. Benavente; J. Martínez-Costas

Avian reoviruses are important pathogens that may cause considerable economic losses in poultry farming. Their genome expresses at least eight structural and four nonstructural proteins, three of them encoded by the S1 gene. These viruses enter cells by receptor-mediated endocytosis, and acidification of virus-containing endosomes is necessary for the virus to uncoat and release transcriptionally active cores into the cytosol. Avian reoviruses replicate within cytoplasmic inclusions of globular morphology, termed viral factories, which are not microtubule-associated, and which are formed by the nonstructural protein µNS. This protein also mediates the association of some viral proteins (but not of others) with inclusions, suggesting that the recruitment of viral proteins into avian reovirus factories has specificity. Avian reovirus morphogenesis is a complex and temporally controlled process that takes place exclusively within viral factories of infected cells. Core assembly takes place within the first 30 min after the synthesis of their protein components, and fully formed cores are then coated by outer-capsid polypeptides over the next 30 min to generate mature infectious reovirions. Based on data from avian reovirus studies and on results reported for other members of the family, we present a model for avian reovirus gene expression and morphogenesis.

Pp. 67-85

Bluetongue Virus Assembly and Morphogenesis

P. Roy; R. Noad

Like other members of the , bluetongue virus faces the same constraints on structure and assembly that are imposed by a large dsRNA genome. However, since it is arthropod-transmitted, BTV must have assembly pathways that are sufficiently flexible to allow it to replicate in evolutionarily distant hosts. With this background, it is hardly surprising that BTV interacts with highly conserved cellular pathways during morphogenesis and trafficking. Indeed, recent studies have revealed striking parallels between the pathways involved in the entry and egress of nonenveloped BTV and those used by enveloped viruses. In addition, recent studies with the protein that is the major component of the BTV viroplasm have revealed how the assembly and, as importantly, the disassembly of this structure may be achieved. This is a first step towards resolving the interactions that occur in these virus ‘assembly factories’. Overall, this review demonstrates that the integration of structural, biochemical and molecular data is necessary to fully understand the assembly and replication of this complex RNA virus.

Pp. 87-116

Reovirus Structure and Morphogenesis

K. M. Coombs

Assembly of a mature infectious virion from component parts is one of the last steps in the replicative cycle of most viruses. Recent advances in delineating aspects of this process for the mammalian orthoreoviruses (MRV), nonenveloped viruses composed of a genome of ten segments of double-stranded RNA enclosed in two concentric icosahedral protein capsids, are discussed. Analyses of temperature-sensitive () assembly-defective reovirus mutants have been used to better understand requirements for viral inclusion formation and capsid morphogenesis. Newly determined high-resolution structures of virtually all MRV proteins, combined with complete MRV genomic sequence information and elucidation of sequence lesions in mutants, is now providing a context formolecularly understanding interactions that promote, or abrogate, reovirus capsid assembly. Additional advances in understanding required signals for whole genome construction fromsets of the ten individual genes, and in transcapsidation of subviral particles with engineered outer capsid proteins, provide additional molecular genetic understanding of reovirus protein structure-function and morphogenesis.

Pp. 117-167

Rotavirus Genome Replication and Morphogenesis: Role of the Viroplasm

J. T. Patton; L. S. Silvestri; M. A. Tortorici; R. Vasquez-Del Carpio; Z. F. Taraporewala

The rotaviruses, members of the family , are icosahedral triple-layered viruses with genomes consisting of 11 segments of double-stranded (ds)RNA. A characteristic feature of rotavirus-infected cells is the formation of large cytoplasmic inclusion bodies, termed viroplasms. These dynamic and highly organized structures serve as viral factories that direct the packaging and replication of the viral genome into early capsid assembly intermediates. Migration of the intermediates to the endoplasmic reticulum (ER) initiates a budding process that culminates in final capsid assembly. Recent information on the development and organization of viroplasms, the structure and function of its components, and interactive pathways linking RNA synthesis and capsid assembly provide new insight into how these microenvironments serve to interface the replication and morphogenetic processes of the virus.

Pp. 169-187

Rotavirus Proteins: Structure and Assembly

J. B. Pesavento; S. E. Crawford; M. K. Estes; B. V. Venkataram Prasad

Rotavirus is a major pathogen of infantile gastroenteritis. It is a large and complex virus with a multilayered capsid organization that integrates the deter minants of host specificity, cell entry, and the enzymatic functions necessary for endogenous transcription of the genome that consists of 11 dsRNA segments. These segments encode six structural and six nonstructural proteins. In the last few years, there has been substantial progress in our understanding of both the structural and functional aspects of a variety of molecular processes involved in the replication of this virus. Studies leading to this progress using of a variety of structural and biochemical techniques including the recent application of RNA interference technology have uncovered several unique and intriguing features related to viral morphogenesis. This review focuses on our current understanding of the structural basis of the molecular processes that govern the replication of rotavirus.

Pp. 189-219

Structural Studies on Orbivirus Proteins and Particles

D. I. Stuart; J. M. Grimes

X-ray and electron microscopy analysis of virus (BTV), the type species of the genus within the family , have revealed various aspects of the organisation and structure of the proteins that form the viral capsid. Orbiviruses have a segmented dsRNA genome, which imposes constraints on their structure and life cycle. The atomic structure of the BTV core particle, the key viral component which transcribes the viral mRNA within the cell cytoplasm, revealed the architecture and assembly of the major core proteins VP7 and VP3. In addition, these studies formed the basis for a plausible model for the organisation of the dsRNA viral genome and the arrangement of the viral transcriptase complex (composed of the RNA-dependent RNA polymerase, the viral capping enzyme and RNA helicase) that resides within the core particle. Electron cryo-microscopy of the viral particle has shown how the two viral proteins VP2 and VP5 are arranged to form the outer capsid, with distinct packing arrangements between them and the core protein VP7. By comparison of the outer capsid proteins of orbiviruses with those of other nonturreted members of the family , we are able to propose a more detailed model of these structures and possible mechanisms for cell entry. Further structural results are also discussed including the atomic structure of an N-terminal domain of nonstructural protein NS2, a protein involved in virus genome assembly and morphogenesis.

Pp. 221-244

Rotavirus Assembly: An Alternative Model That Utilizes an Atypical Trafficking Pathway

S. Chwetzoff; G. Trugnan

We review here recent advances in our knowledge on trafficking and assembly of rotavirus and rotaviral proteins in intestinal cells. Assembly of rotavirus has been extensively studied in nonpolarized kidney epithelial MA104 cells, where several data indicate that most if not all the steps of rotavirus assembly take place within the endoplasmic reticulum (ER) and that rotavirus is release upon cell lysis. We focus here on data obtained in intestinal cells that argue for another scheme of rotavirus assembly, where the final steps seem to take place outside the ER with an apically polarized release of rotavirus without significant cell lysis. One of the key observations made by different groups is that VP4 and other structural proteins interact substantially with specialized membrane microdomains enriched in cholesterol and sphingolipids termed rafts. In addition, recent data point to the fact that VP4 does not localize within the ER or the Golgi apparatus in infected intestinal cells. The mechanisms by which VP4, a cytosolic protein, may be targeted to the apical membrane in these cells and assembles with the other structural proteins are discussed. The identification of cellular proteins such as Hsp70, flotillin, rab5, PRA1 and cytoskeletal components that interact with VP4 may help to define an atypical polarized trafficking pathway to the apical membrane of intestinal cells that will be raft-dependent and by-pass the classical exocytic route.

Pp. 245-261