Catálogo de publicaciones - libros

Compartir en
redes sociales


Marine Biotechnology I

Roland Ulber ; Yves Le Gal (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Biotechnology; Freshwater & Marine Ecology; Microbiology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-25659-5

ISBN electrónico

978-3-540-31549-0

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

Screening for New Metabolites from Marine Microorganisms

Thomas Schweder; Ulrike Lindequist; Michael Lalk

This article gives an overview of current analysis techniques for the screening and the activity analysis of metabolites from marine (micro)organisms. The sequencing of marine genomes and the techniques of functional genomics (including transcriptome, proteome, and metabolome analyses) open up new possibilities for the screening of new metabolites of biotechnological interest. Although the sequencing of microbial marine genomes has been somewhat limited to date, selected genome sequences of marine bacteria and algae have already been published. This report summarizes the application of the techniques of functional genomics, such as transcriptome analysis in combination with high-resolution two-dimensional polyacrylamide gelelectrophoresis and mass spectrometry, for the screening for bioactive compounds of marine microorganisms. Furthermore, the target analysis of antimicrobial compounds by proteome or transcriptome analysis of bacterial model systems is described. Recent high-throughput screening techniques are explained. Finally, new approaches for the screening of metabolites from marine microorganisms are discussed.

Pp. 1-48

Fatty Acids from Lipids of Marine Organisms: Molecular Biodiversity, Roles as Biomarkers, Biologically Active Compounds, and Economical Aspects

Jean-Pascal Bergé; Gilles Barnathan

Because of their characteristic living environments, marine organisms produce a variety of lipids. Fatty acids constitute the essential part of triglycerides and wax esters, which are the major components of fats and oils. Nevertheless, phospholipids and glycolipids have considerable importance and will be taken into account, especially the latter compounds that excite increasing interest regarding their promising biological activities. Thus, in addition to the major polyunsaturated fatty acids (PUFA) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, a great number of various fatty acids occur in marine organisms, e.g. saturated, mono- and diunsaturated, branched, halogenated, hydroxylated, methoxylated, non-methylene-interrupted. Various unprecedented chemical structures of fatty acids, and lipid-containing fatty acids, have recently been discovered, especially from the most primitive animals such as sponges and gorgonians. This review of marine lipidology deals with recent advances in the field of fatty acids since the end of the 1990s. Different approaches will be followed, mainly developing biomarkers of trophic chains in marine ecosystems and of chemotaxonomic interest, reporting new structures, especially those with biological activities or biosynthetic interest. An important part of this review will be devoted to the major PUFA, their relevance to health and nutrition, their biosynthesis, their sources (usual and promising) and market.

Pp. 49-125

Fish and Shellfish Upgrading, Traceability

Fabienne Guérard; Daniel Sellos; Yves Le Gal

Recognition of the limited biological resources and the increasing environmental pollution has emphasised the need for better utilisation of by-products from the fisheries. Currently, the seafood industry is dependent on the processing of the few selected fish and shellfish species that are highly popular with consumers but, from economic and nutritional points of view, it is essential to utilise the entire catch. In this review, we will focus on recent developments and innovations in the field of underutilised marine species and marine by-product upgrading and, more precisely, on two aspects of the bioconversion of wastes from marine organisms, i.e. extraction of enzymes and preparation of protein hydrolysates. We will deal with the question of accurate determination of fish species at the various steps of processing. Methods of genetic identification applicable to fresh fish samples and to derived products will be described.

Pp. 127-163

Marine Microalgae

Tadashi Matsunaga; Haruko Takeyama; Hideki Miyashita; Hiroko Yokouchi

Marine microalgae, the largest primary biomass, have been attracting attention as resources for new metabolites and biotechnologically useful genes. The diversified marine environment harbors a large variety of microalgae. In this paper, the biotechnological aspects and fundamental characteristics of marine microalgae are reviewed.

Pp. 165-188

Marine Enzymes

Ghosh Debashish; Saha Malay; Sana Barindra; Mukherjee Joydeep

Marine enzyme biotechnology can offer novel biocatalysts with properties like high salt tolerance, hyperthermostability, barophilicity, cold adaptivity, and ease in large-scale cultivation. This review deals with the research and development work done on the occurrence, molecular biology, and bioprocessing of marine enzymes during the last decade. Exotic locations have been accessed for the search of novel enzymes. Scientists have isolated proteases and carbohydrases from deep sea hydrothermal vents. Cold active metabolic enzymes from psychrophilic marine microorganisms have received considerable research attention. Marine symbiont microorganisms growing in association with animals and plants were shown to produce enzymes of commercial interest. Microorganisms isolated from sediment and seawater have been the most widely studied, proteases, carbohydrases, and peroxidases being noteworthy. Enzymes from marine animals and plants were primarily studied for their metabolic roles, though proteases and peroxidases have found industrial applications. Novel techniques in molecular biology applied to assess the diversity of chitinases, nitrate, nitrite, ammonia-metabolizing, and pollutant-degrading enzymes are discussed. Genes encoding chitinases, proteases, and carbohydrases from microbial and animal sources have been cloned and characterized. Research on the bioprocessing of marine-derived enzymes, however, has been scanty, focusing mainly on the application of solid-state fermentation to the production of enzymes from microbial sources.

Pp. 189-218

Extreme Environments as a Resource for Microorganisms and Novel Biocatalysts

Garabed Antranikian; Constantinos E. Vorgias; Costanzo Bertoldo

The steady increase in the number of newly isolated extremophilic microorganisms and the discovery of their enzymes by academic and industrial institutions underlines the enormous potential of extremophiles for application in future biotechnological processes. Enzymes from extremophilic microorganisms offer versatile tools for sustainable developments in a variety of industrial application as they show important environmental benefits due to their biodegradability, specific stability under extreme conditions, improved use of raw materials and decreased amount of waste products. Although major advances have been made in the last decade, our knowledge of the physiology, metabolism, enzymology and genetics of this fascinating group of extremophilic microorganisms and their related enzymes is still limited. In-depth information on the molecular properties of the enzymes and their genes, however, has to be obtained to analyze the structure and function of proteins that are catalytically active around the boiling and freezing points of water and extremes of pH. New techniques, such as genomics, metanogenomics, DNA evolution and gene shuffling, will lead to the production of enzymes that are highly specific for countless industrial applications. Due to the unusual properties of enzymes from extremophiles, they are expected to optimize already existing processes or even develop new sustainable technologies.

Pp. 219-262