Catálogo de publicaciones - libros
Difficoltà in matematica: Osservare, interpretare, intervenire
Rosetta Zan
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Mathematics Education; Teaching and Teacher Education; Learning & Instruction
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-88-470-0583-9
ISBN electrónico
978-88-470-0584-6
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer-Verlag Italia 2007
Cobertura temática
Tabla de contenidos
Difficoltà in matematica
Rosetta Zan
In questo primo capitolo cercheremo di definire con più precisione il problema che intendiamo affrontare. Come vedremo infatti l’espressione ‘difficoltà in matematica’ è ambigua, ed è necessario quindi chiarire meglio qual è il senso che noi le attribuiremo in questo lavoro. Per aiutarci faremo riferimento a quella che ho chiamato ‘una Galleria di scene di scuola quotidiana’: 12 esempi di situazioni che hanno per protagonisti allievi di diversi ordini di scuola (dalle elementari all’università) tratti dalla letteratura o dalla mia esperienza di ricerca ed insegnamento. Questi esempi saranno un continuo punto di riferimento per le riflessioni che faremo, ed i protagonisti delle scene ci accompagneranno nel nostro viaggio alla ricerca di strumenti per affrontare il problema delle difficoltà.
Parte 1 - Difficoltà ed errori | Pp. 3-20
L’errore
Rosetta Zan
Protagonista indiscusso di questo capitolo è l’, o meglio, la scelta di assumere l’errore come indicatore privilegiato di difficoltà: dato che questa scelta ha un ruolo importante nell’approccio standard alle difficoltà in matematica, cercheremo di capire quali possono essere i vantaggi ed i limiti che essa comporta.
Parte 1 - Difficoltà ed errori | Pp. 21-44
L’apprendimento come attività costruttiva
Rosetta Zan
Come abbiamo visto alla fine del primo capitolo, e come hanno confermato le risposte degli insegnanti in formazione riportate, l’intervento tradizionale di recupero è coerente con un’interpretazione dell’errore che spesso rimane implicita: l’errore è per lo più attribuito a mancanza di conoscenze o abilità relative al contesto in cui si è verificato.
Parte 1 - Difficoltà ed errori | Pp. 45-68
L’interpretazione degli errori: prime osservazioni
Rosetta Zan
Il modello costruttivista presentato nel capitolo precedente vede nell’allievo un soggetto attivo che costruisce la propria conoscenza e che interpreta l’esperienza. Questo punto di vista permette di spiegare molti errori in matematica in modi alternativi rispetto a quello tradizionale, secondo il quale l’errore è semplicemente frutto di mancanza di conoscenze o abilità. Le teorie coerenti con tale modello e sinteticamente presentate nel capitolo precedente su contesto, razionalità, linguaggio, forniscono infatti nuovi strumenti per interpretare i comportamenti degli allievi, ed aprono quindi uno scenario di possibilità cui far riferimento quando cerchiamo di capirne le risposte per poi intervenire con maggiore efficacia.
Parte 1 - Difficoltà ed errori | Pp. 69-112
I comportamenti fallimentari
Rosetta Zan
In questo capitolo getteremo le basi per la costruzione di un processo di osservazione alternativo a quello tradizionale, che come abbiamo più volte detto è centrato sull’individuazione di errori. Dato che questa osservazione è finalizzata all’intervento, l’idea che ci guida è quella di . Ma deve cambiare ? In realtà quello che l’insegnante vuole è che l’allievo non ripeta certi errori, che impari ad affrontare e risolvere in modo efficace le situazioni problematiche che gli vengono proposte: in definitiva che l’allievo modifichi i propri comportamenti inadeguati (o meglio: quelli che l’insegnante ritiene inadeguati) in matematica. Quindi è che si chiede di cambiare: ma se non lo coinvolgiamo attivamente in questo progetto che richiede tempo e fatica, il cambiamento non potrà avvenire in modo efficace e profondo, ed al più riusciremo ad ottenere da lui delle risposte diverse.
Parte 2 - Dagli errori ai comportamenti fallimentari | Pp. 115-145
Problem solving
Rosetta Zan
Dopo aver preso in esame la definizione stessa di problema ed alcune implicazioni significative di tale definizione, in questo capitolo possiamo finalmente riprendere le riflessioni sul problem solving che avevamo lasciato in sospeso.
Parte 2 - Dagli errori ai comportamenti fallimentari | Pp. 147-196
L’interpretazione dei comportamenti fallimentari
Rosetta Zan
Nei due capitoli precedenti abbiamo raccolto ulteriori strumenti per poter interpretare i comportamenti dei nostri allievi. Abbiamo prima sottolineato alcuni aspetti intrinseci alla complessità dell’apprendimento, e cioè la presenza di due soggetti distinti - l’allievo e l’insegnante - che ci hanno portato a distinguere fra e .Quindi abbiamo fatto riferimento ad alcuni risultati che la ricerca sul problem solving ha prodotto, per comprendere quali elementi influiscono sui processi decisionali di un soggetto che risolve un problema. Questi risultati ci permettono di costruire un repertorio di interpretazioni possibili per i comportamenti fallimentari dei nostri allievi, e ci spingono anche a ritornare sull’interpretazione degli errori con un approccio meno locale di quello che abbiamo descritto nel quarto capitolo.
Parte 2 - Dagli errori ai comportamenti fallimentari | Pp. 197-225
Strategie per il recupero
Rosetta Zan
Dopo aver a lungo riflettuto sugli aspetti dell’osservazione e dell’interpretazione, soprattutto dopo aver sottolineato la responsabilità di certe azioni didattiche nella nascita di difficoltà, viene naturale chiedersi: ...e allora, cosa si può fare? Cosa si può fare per intervenire, ma ancora prima per prevenire, e comunque per osservare? In particolare, vista l’enfasi che abbiamo dato ad aspetti metacognitivi ed affettivi e che abbiamo sintetizzato con il costrutto di atteggiamento, cosa si può fare per prevenire o scardinare un atteggiamento negativo verso la matematica?
Parte 2 - Dagli errori ai comportamenti fallimentari | Pp. 227-284