Catálogo de publicaciones - libros
CPU Design: Answers to Frequently Asked Questions
Chandra M. R. Thimmannagari
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-23799-2
ISBN electrónico
978-0-387-23800-5
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science + Business Media, Inc. 2005
Cobertura temática
Tabla de contenidos
Architecture
Chandra M. R. Thimmannagari
Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group
Pp. 1-120
Logic
Chandra M. R. Thimmannagari
Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group
Pp. 121-151
Circuits and Layout
Chandra M. R. Thimmannagari
Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group
Pp. 153-178
Verification and Testing
Chandra M. R. Thimmannagari
Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group
Pp. 179-193
Tools
Chandra M. R. Thimmannagari
Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group
Pp. 195-206
Verilog
Chandra M. R. Thimmannagari
Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group
Pp. 207-235