Catálogo de publicaciones - libros

Compartir en
redes sociales


CPU Design: Answers to Frequently Asked Questions

Chandra M. R. Thimmannagari

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-23799-2

ISBN electrónico

978-0-387-23800-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science + Business Media, Inc. 2005

Tabla de contenidos

Architecture

Chandra M. R. Thimmannagari

Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group

Pp. 1-120

Logic

Chandra M. R. Thimmannagari

Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group

Pp. 121-151

Circuits and Layout

Chandra M. R. Thimmannagari

Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group

Pp. 153-178

Verification and Testing

Chandra M. R. Thimmannagari

Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group

Pp. 179-193

Tools

Chandra M. R. Thimmannagari

Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group

Pp. 195-206

Verilog

Chandra M. R. Thimmannagari

Over the last twenty five years a consistent picture of the structure and dynamics of canopy turbulence has emerged. We now know that there are fundamental differences between the structure of turbulent flow through uniform vegetation canopies and that in a boundary layer. The flow in and above the canopy, that is, in the ‘roughness sublayer’ resembles that in a plane mixing layer rather than a boundary layer. Turbulence production rates near the canopy top are much higher than in a boundary layer and characteristic large, energy-containing eddies, quite distinct from those in the boundary layer above are generated there by a hydrodynamic instability process. In the canopy, the dissipation rate of turbulence is also enhanced because boundary layers on the vegetation surfaces provide a source of intense shear layers with thicknesses of order the Kolmogorov lengthscale, augmenting those in the normal eddy cascade. This paper describes the way that this ‘standard’ picture of canopy turbulence is modified by topography so it is appropriate to set the scene with a brief history of how this standard picture was constructed. As scientific histories generally are, this will be a personal account, reflecting the line of discovery followed over the last three deacdes by the group

Pp. 207-235