Catálogo de publicaciones - libros

Compartir en
redes sociales


Vector Analysis for Computer Graphics

John Vince

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Computer Graphics; Geometry; Math Applications in Computer Science

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-84628-803-6

ISBN electrónico

978-1-84628-804-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag London Limited 2007

Tabla de contenidos

Scalars and Vectors

John Vince

We proposed a new holonomic mobile mechanism which is capable of running over the step. This mechanism realizes omni-directional motion on flat floor and passes over non-flat ground in forward or backward direction. The vehicle equips seven omni-directional wheels with cylindrical free rollers and two passive body axis that provide to change the shape of the body on the rough terrain. This paper presents a method to control the wheels for passing over rough terrain with the stable posture. Our vehicle is required to keep synchronization among its wheels for climbing the step without slipping and blocking. Therefore, in this paper, an algorithm of synchronization among all wheels is proposed. The performance of our system is experimented by means of computer simulations and experiments using our prototype vehicle.

Pp. 1-10

Vector Representation

John Vince

We proposed a new holonomic mobile mechanism which is capable of running over the step. This mechanism realizes omni-directional motion on flat floor and passes over non-flat ground in forward or backward direction. The vehicle equips seven omni-directional wheels with cylindrical free rollers and two passive body axis that provide to change the shape of the body on the rough terrain. This paper presents a method to control the wheels for passing over rough terrain with the stable posture. Our vehicle is required to keep synchronization among its wheels for climbing the step without slipping and blocking. Therefore, in this paper, an algorithm of synchronization among all wheels is proposed. The performance of our system is experimented by means of computer simulations and experiments using our prototype vehicle.

Pp. 11-59

Straight Lines

John Vince

We proposed a new holonomic mobile mechanism which is capable of running over the step. This mechanism realizes omni-directional motion on flat floor and passes over non-flat ground in forward or backward direction. The vehicle equips seven omni-directional wheels with cylindrical free rollers and two passive body axis that provide to change the shape of the body on the rough terrain. This paper presents a method to control the wheels for passing over rough terrain with the stable posture. Our vehicle is required to keep synchronization among its wheels for climbing the step without slipping and blocking. Therefore, in this paper, an algorithm of synchronization among all wheels is proposed. The performance of our system is experimented by means of computer simulations and experiments using our prototype vehicle.

Pp. 61-99

The Plane

John Vince

We proposed a new holonomic mobile mechanism which is capable of running over the step. This mechanism realizes omni-directional motion on flat floor and passes over non-flat ground in forward or backward direction. The vehicle equips seven omni-directional wheels with cylindrical free rollers and two passive body axis that provide to change the shape of the body on the rough terrain. This paper presents a method to control the wheels for passing over rough terrain with the stable posture. Our vehicle is required to keep synchronization among its wheels for climbing the step without slipping and blocking. Therefore, in this paper, an algorithm of synchronization among all wheels is proposed. The performance of our system is experimented by means of computer simulations and experiments using our prototype vehicle.

Pp. 101-121

Reflections

John Vince

We proposed a new holonomic mobile mechanism which is capable of running over the step. This mechanism realizes omni-directional motion on flat floor and passes over non-flat ground in forward or backward direction. The vehicle equips seven omni-directional wheels with cylindrical free rollers and two passive body axis that provide to change the shape of the body on the rough terrain. This paper presents a method to control the wheels for passing over rough terrain with the stable posture. Our vehicle is required to keep synchronization among its wheels for climbing the step without slipping and blocking. Therefore, in this paper, an algorithm of synchronization among all wheels is proposed. The performance of our system is experimented by means of computer simulations and experiments using our prototype vehicle.

Pp. 123-127

Intersections

John Vince

We proposed a new holonomic mobile mechanism which is capable of running over the step. This mechanism realizes omni-directional motion on flat floor and passes over non-flat ground in forward or backward direction. The vehicle equips seven omni-directional wheels with cylindrical free rollers and two passive body axis that provide to change the shape of the body on the rough terrain. This paper presents a method to control the wheels for passing over rough terrain with the stable posture. Our vehicle is required to keep synchronization among its wheels for climbing the step without slipping and blocking. Therefore, in this paper, an algorithm of synchronization among all wheels is proposed. The performance of our system is experimented by means of computer simulations and experiments using our prototype vehicle.

Pp. 129-177

Rotating Vectors

John Vince

We proposed a new holonomic mobile mechanism which is capable of running over the step. This mechanism realizes omni-directional motion on flat floor and passes over non-flat ground in forward or backward direction. The vehicle equips seven omni-directional wheels with cylindrical free rollers and two passive body axis that provide to change the shape of the body on the rough terrain. This paper presents a method to control the wheels for passing over rough terrain with the stable posture. Our vehicle is required to keep synchronization among its wheels for climbing the step without slipping and blocking. Therefore, in this paper, an algorithm of synchronization among all wheels is proposed. The performance of our system is experimented by means of computer simulations and experiments using our prototype vehicle.

Pp. 179-200

Vector Differentiation

John Vince

We proposed a new holonomic mobile mechanism which is capable of running over the step. This mechanism realizes omni-directional motion on flat floor and passes over non-flat ground in forward or backward direction. The vehicle equips seven omni-directional wheels with cylindrical free rollers and two passive body axis that provide to change the shape of the body on the rough terrain. This paper presents a method to control the wheels for passing over rough terrain with the stable posture. Our vehicle is required to keep synchronization among its wheels for climbing the step without slipping and blocking. Therefore, in this paper, an algorithm of synchronization among all wheels is proposed. The performance of our system is experimented by means of computer simulations and experiments using our prototype vehicle.

Pp. 201-211

Projections

John Vince

We proposed a new holonomic mobile mechanism which is capable of running over the step. This mechanism realizes omni-directional motion on flat floor and passes over non-flat ground in forward or backward direction. The vehicle equips seven omni-directional wheels with cylindrical free rollers and two passive body axis that provide to change the shape of the body on the rough terrain. This paper presents a method to control the wheels for passing over rough terrain with the stable posture. Our vehicle is required to keep synchronization among its wheels for climbing the step without slipping and blocking. Therefore, in this paper, an algorithm of synchronization among all wheels is proposed. The performance of our system is experimented by means of computer simulations and experiments using our prototype vehicle.

Pp. 213-224

Rendering

John Vince

We proposed a new holonomic mobile mechanism which is capable of running over the step. This mechanism realizes omni-directional motion on flat floor and passes over non-flat ground in forward or backward direction. The vehicle equips seven omni-directional wheels with cylindrical free rollers and two passive body axis that provide to change the shape of the body on the rough terrain. This paper presents a method to control the wheels for passing over rough terrain with the stable posture. Our vehicle is required to keep synchronization among its wheels for climbing the step without slipping and blocking. Therefore, in this paper, an algorithm of synchronization among all wheels is proposed. The performance of our system is experimented by means of computer simulations and experiments using our prototype vehicle.

Pp. 225-239