Catálogo de publicaciones - libros
Presenting and Representing Environments
Graham Humphrys ; Michael Williams (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-3813-6
ISBN electrónico
978-1-4020-3814-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer 2005
Cobertura temática
Tabla de contenidos
Cross-Disciplines, Cross-Cultures: The Environment as Social Construction
Graham Humphrys; Michael Williams
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 1-15
Environmentalism Environmental Non-Government Organisations and the Contested Remapping of British Columbia’s Forests
Roger Hayter
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 17-32
Re-Negotiating Science in Protected Areas: Grizzly Bear Conservation in the Southwest Yukon
Douglas Clark; D. Scott Slocombe
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 33-53
The Moorlands of England and Wales: Histories and Narratives
Ian G. Simmons
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 55-67
Exploration Literature and the Canadian Environment: From Way-Finding to Ways of Representation and Reading
Wayne K. D. Davies
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 69-87
Changing Public Participation and the Environment of Swansea East
Graham Humphrys
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 89-104
Sustaining Local Riverine Environments: The River Valleys Committee in Calgary, Alberta, Canada
Dianne Draper
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 105-119
A Picnic in March: Media Coverage of Climate Change and Public Opinion in the United Kingdom
Tammy Speers
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 121-135
Challenging the Negative Critique of Landscape
Robert A. Newell
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 137-151
Threatened Environments, Atrophying Cultures, Lacklustre Policies
Colin H. Williams
Textile dyeing effluents containing recalcitrant dyes are polluting waters due to their color and by the formation of toxic or carcinogenic intermediates such as aromatic amines from azo dyes. Since conventional treatment systems based on chemical or physical methods are quite expensive and consume high amounts of chemicals and energy, alternative biotechnologies for this purpose have recently been studied. A number of anaerobic and aerobic processes have been developed at laboratory scale to treat dyestuff. Some industrial pilot scale plants have even been set up. Additionally, biosorption shows very promising results for decolorizing textile effluents. In this contribution, we review fundamental and applied aspects of biological treatment of textile dyes.
Pp. 153-166