Catálogo de publicaciones - libros
Statistical Analysis of Environmental Space-Time Processes
Nhu D. Le James V. Zidek
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-26209-3
ISBN electrónico
978-0-387-35429-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2006
Cobertura temática
Tabla de contenidos
First Encounters
Nhu D. Le; James V. Zidek
A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.
Part I: - Environmental Processes | Pp. 3-13
Case Study
Nhu D. Le; James V. Zidek
A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.
Part I: - Environmental Processes | Pp. 15-25
Uncertainty
Nhu D. Le; James V. Zidek
A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.
Part I: - Environmental Processes | Pp. 27-33
Measurement
Nhu D. Le; James V. Zidek
A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.
Part I: - Environmental Processes | Pp. 35-51
Modeling
Nhu D. Le; James V. Zidek
A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.
Part I: - Environmental Processes | Pp. 53-79
Covariances
Nhu D. Le; James V. Zidek
A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.
Part II: - Space-Time Modeling | Pp. 83-100
Spatial Prediction: Classical Approaches
Nhu D. Le; James V. Zidek
A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.
Part II: - Space-Time Modeling | Pp. 101-117
Bayesian Kriging
Nhu D. Le; James V. Zidek
A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.
Part II: - Space-Time Modeling | Pp. 119-130
Hierarchical Bayesian Kriging
Nhu D. Le; James V. Zidek
A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.
Part II: - Space-Time Modeling | Pp. 131-149
Multivariate Modeling***
Nhu D. Le; James V. Zidek
A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.
Part III: - Design and Risk Assessment | Pp. 153-183