Catálogo de publicaciones - libros

Compartir en
redes sociales


Statistical Analysis of Environmental Space-Time Processes

Nhu D. Le James V. Zidek

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-26209-3

ISBN electrónico

978-0-387-35429-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, Inc. 2006

Tabla de contenidos

First Encounters

Nhu D. Le; James V. Zidek

A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.

Part I: - Environmental Processes | Pp. 3-13

Case Study

Nhu D. Le; James V. Zidek

A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.

Part I: - Environmental Processes | Pp. 15-25

Uncertainty

Nhu D. Le; James V. Zidek

A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.

Part I: - Environmental Processes | Pp. 27-33

Measurement

Nhu D. Le; James V. Zidek

A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.

Part I: - Environmental Processes | Pp. 35-51

Modeling

Nhu D. Le; James V. Zidek

A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.

Part I: - Environmental Processes | Pp. 53-79

Covariances

Nhu D. Le; James V. Zidek

A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.

Part II: - Space-Time Modeling | Pp. 83-100

Spatial Prediction: Classical Approaches

Nhu D. Le; James V. Zidek

A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.

Part II: - Space-Time Modeling | Pp. 101-117

Bayesian Kriging

Nhu D. Le; James V. Zidek

A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.

Part II: - Space-Time Modeling | Pp. 119-130

Hierarchical Bayesian Kriging

Nhu D. Le; James V. Zidek

A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.

Part II: - Space-Time Modeling | Pp. 131-149

Multivariate Modeling***

Nhu D. Le; James V. Zidek

A number of papers have recently contrasted classical inference estimation methods for logit models with Bayesian methods. It has been argued that two particularly appealing features of the Bayesian approach are its relative simplicity in estimation, and its ability to derive, individual-specific willingness to pay () measures that are less problematic than the classical approaches in terms of extreme values and unexpected signs. This paper challenges this claim by deriving both population derived measures and individual-specific values based on the classical mixed logit model, establishing the extent of unacceptable valuations. Our aim is not to estimate Bayesian contrasts per se but to show that the classical inference approach is likewise straightforward — indeed the individual-specific estimates are a by-product of the parameter estimation process. We also reveal the benefits of calculating measures from ratios of individual parameters which are behaviourally more appealing approximations to the true values of each individual, in contrast to draws from population distributions that run the risk of allocating two parameters that are poorly juxtaposed in a relative sense, resulting in extreme value estimates. Our results suggest that while extreme values and unexpected signs cannot be ruled out (nor can they in the Bayesian framework), the overall superiority of the Bayesian method appears overstated. Both approaches have merit.

Part III: - Design and Risk Assessment | Pp. 153-183