Catálogo de publicaciones - libros

Compartir en
redes sociales


Research Design and Proposal Writing in Spatial Science

Jay D. Gatrell Gregory D. Bierly Ryan R. Jensen

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Geography (general); Landscape/Regional and Urban Planning; Geology; Geographical Information Systems/Cartography; Geoecology/Natural Processes; Ecotoxicology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-27952-5

ISBN electrónico

978-3-540-27953-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

Spatial Science and Its Traditions

Jay D. Gatrell; Gregory D. Bierly; Ryan R. Jensen

Air quality in the small, closed environment of a spacecraft cabin is always a critical matter for the safety, health, and comfort of the crew. The technologies used to keep air breathable in spacecraft have a unique set of requirements because of several constraints that become more important as the duration and distance of space missions lengthen. Technologies must be extremely robust, as supplies and spare parts are few and resupply may be impossible. They must be well coordinated and function in a tightly integrated life-support system. Mass, volume, and power consumption must be minimal due to the high cost of launch mass and limited solar/battery energy. This article examines some of the issues associated with spacecraft air revitalization and briefly reviews some of the technologies developed to maintain quality and minimize waste through recycling of air. We emphasize approaches for long-duration missions (i.e., more than one month), in which technologies need to be regenerable and the oxygen cycle needs to approach closure. We also discuss air revitalization systems for the International Space Station and needs for long-distance missions such as Mars transit.

Pp. 1-10

Literature Reviews

Jay D. Gatrell; Gregory D. Bierly; Ryan R. Jensen

Air quality in the small, closed environment of a spacecraft cabin is always a critical matter for the safety, health, and comfort of the crew. The technologies used to keep air breathable in spacecraft have a unique set of requirements because of several constraints that become more important as the duration and distance of space missions lengthen. Technologies must be extremely robust, as supplies and spare parts are few and resupply may be impossible. They must be well coordinated and function in a tightly integrated life-support system. Mass, volume, and power consumption must be minimal due to the high cost of launch mass and limited solar/battery energy. This article examines some of the issues associated with spacecraft air revitalization and briefly reviews some of the technologies developed to maintain quality and minimize waste through recycling of air. We emphasize approaches for long-duration missions (i.e., more than one month), in which technologies need to be regenerable and the oxygen cycle needs to approach closure. We also discuss air revitalization systems for the International Space Station and needs for long-distance missions such as Mars transit.

Pp. 11-25

Research Questions

Jay D. Gatrell; Gregory D. Bierly; Ryan R. Jensen

Air quality in the small, closed environment of a spacecraft cabin is always a critical matter for the safety, health, and comfort of the crew. The technologies used to keep air breathable in spacecraft have a unique set of requirements because of several constraints that become more important as the duration and distance of space missions lengthen. Technologies must be extremely robust, as supplies and spare parts are few and resupply may be impossible. They must be well coordinated and function in a tightly integrated life-support system. Mass, volume, and power consumption must be minimal due to the high cost of launch mass and limited solar/battery energy. This article examines some of the issues associated with spacecraft air revitalization and briefly reviews some of the technologies developed to maintain quality and minimize waste through recycling of air. We emphasize approaches for long-duration missions (i.e., more than one month), in which technologies need to be regenerable and the oxygen cycle needs to approach closure. We also discuss air revitalization systems for the International Space Station and needs for long-distance missions such as Mars transit.

Pp. 27-36

Data and Methods in Spatial Science

Jay D. Gatrell; Gregory D. Bierly; Ryan R. Jensen

This chapter highlights a successful grant proposal submitted in 2002 to the Division of Environmental Biology (DEB) located within the Directorate for Biological Sciences of the National Science Foundation (NSF) (Award NSF DEB-0217463). This NSF-funded grant proposal is an example of the use of spatial science outside of geography—in this case biology. Collectively, the research described below is known as spatial ecology.

Pp. 37-47

Graduate Degree Proposals

Jay D. Gatrell; Gregory D. Bierly; Ryan R. Jensen

Air quality in the small, closed environment of a spacecraft cabin is always a critical matter for the safety, health, and comfort of the crew. The technologies used to keep air breathable in spacecraft have a unique set of requirements because of several constraints that become more important as the duration and distance of space missions lengthen. Technologies must be extremely robust, as supplies and spare parts are few and resupply may be impossible. They must be well coordinated and function in a tightly integrated life-support system. Mass, volume, and power consumption must be minimal due to the high cost of launch mass and limited solar/battery energy. This article examines some of the issues associated with spacecraft air revitalization and briefly reviews some of the technologies developed to maintain quality and minimize waste through recycling of air. We emphasize approaches for long-duration missions (i.e., more than one month), in which technologies need to be regenerable and the oxygen cycle needs to approach closure. We also discuss air revitalization systems for the International Space Station and needs for long-distance missions such as Mars transit.

Pp. 49-53

Grants and Grant Writing

Jay D. Gatrell; Gregory D. Bierly; Ryan R. Jensen

Air quality in the small, closed environment of a spacecraft cabin is always a critical matter for the safety, health, and comfort of the crew. The technologies used to keep air breathable in spacecraft have a unique set of requirements because of several constraints that become more important as the duration and distance of space missions lengthen. Technologies must be extremely robust, as supplies and spare parts are few and resupply may be impossible. They must be well coordinated and function in a tightly integrated life-support system. Mass, volume, and power consumption must be minimal due to the high cost of launch mass and limited solar/battery energy. This article examines some of the issues associated with spacecraft air revitalization and briefly reviews some of the technologies developed to maintain quality and minimize waste through recycling of air. We emphasize approaches for long-duration missions (i.e., more than one month), in which technologies need to be regenerable and the oxygen cycle needs to approach closure. We also discuss air revitalization systems for the International Space Station and needs for long-distance missions such as Mars transit.

Pp. 55-64

Disseminating Research

Jay D. Gatrell; Gregory D. Bierly; Ryan R. Jensen

Air quality in the small, closed environment of a spacecraft cabin is always a critical matter for the safety, health, and comfort of the crew. The technologies used to keep air breathable in spacecraft have a unique set of requirements because of several constraints that become more important as the duration and distance of space missions lengthen. Technologies must be extremely robust, as supplies and spare parts are few and resupply may be impossible. They must be well coordinated and function in a tightly integrated life-support system. Mass, volume, and power consumption must be minimal due to the high cost of launch mass and limited solar/battery energy. This article examines some of the issues associated with spacecraft air revitalization and briefly reviews some of the technologies developed to maintain quality and minimize waste through recycling of air. We emphasize approaches for long-duration missions (i.e., more than one month), in which technologies need to be regenerable and the oxygen cycle needs to approach closure. We also discuss air revitalization systems for the International Space Station and needs for long-distance missions such as Mars transit.

Pp. 65-76

Reflections on Proposal Writing in Spatial Science

Jay D. Gatrell; Gregory D. Bierly; Ryan R. Jensen

Air quality in the small, closed environment of a spacecraft cabin is always a critical matter for the safety, health, and comfort of the crew. The technologies used to keep air breathable in spacecraft have a unique set of requirements because of several constraints that become more important as the duration and distance of space missions lengthen. Technologies must be extremely robust, as supplies and spare parts are few and resupply may be impossible. They must be well coordinated and function in a tightly integrated life-support system. Mass, volume, and power consumption must be minimal due to the high cost of launch mass and limited solar/battery energy. This article examines some of the issues associated with spacecraft air revitalization and briefly reviews some of the technologies developed to maintain quality and minimize waste through recycling of air. We emphasize approaches for long-duration missions (i.e., more than one month), in which technologies need to be regenerable and the oxygen cycle needs to approach closure. We also discuss air revitalization systems for the International Space Station and needs for long-distance missions such as Mars transit.

Pp. 77-78

Model Proposals

Jay D. Gatrell; Gregory D. Bierly; Ryan R. Jensen

Air quality in the small, closed environment of a spacecraft cabin is always a critical matter for the safety, health, and comfort of the crew. The technologies used to keep air breathable in spacecraft have a unique set of requirements because of several constraints that become more important as the duration and distance of space missions lengthen. Technologies must be extremely robust, as supplies and spare parts are few and resupply may be impossible. They must be well coordinated and function in a tightly integrated life-support system. Mass, volume, and power consumption must be minimal due to the high cost of launch mass and limited solar/battery energy. This article examines some of the issues associated with spacecraft air revitalization and briefly reviews some of the technologies developed to maintain quality and minimize waste through recycling of air. We emphasize approaches for long-duration missions (i.e., more than one month), in which technologies need to be regenerable and the oxygen cycle needs to approach closure. We also discuss air revitalization systems for the International Space Station and needs for long-distance missions such as Mars transit.

Pp. 79-79

Thesis I: Human Systems-Qualitative

Dean R. Beck

This proposal is an example of a qualitative research design. Additionally, the proposal demonstrates that a thesis proposal is just that—a proposal. Whereas some thesis proposals may appear to be nearly completed works, this proposal is an example of a common—but effective—research proposal. The proposal identifies the key issues, methods, and study area and sketches the core theoretical framework that informs the study.

Pp. 81-89