Catálogo de publicaciones - libros

Compartir en
redes sociales


Toxicants in Aqueous Ecosystems: A Guide for the Analytical and Environmental Chemist

T. R. Crompton

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-35738-4

ISBN electrónico

978-3-540-35741-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2007

Tabla de contenidos

Analysis of Fish

T. R. Crompton

Aquatic ecosystems produce about 50% of the global biomass and play an important role in atmospheric carbon dioxide cycling. Since the primary producers are confined to the euphotic zone for energetic reasons, they are simultaneously exposed to short wavelength radiation. Solar UV affects growth, reproduction, photosynthetic production and many other physiological processes. Cyanobacteria are important ubiquitous prokaryotes which populate terrestrial and aquatic habitats. They account for up to 40 % of the marine biomass production and are important components of wet land ecosystems such as rice paddy fields. These organisms are also highly impaired by solar UV, but they and other motile microorganisms have developed mitigating strategies to protect themselves from this stress. One protection strategy is based on vertical migrations within the water column or a microbial mats. However, both motility and orientation are impaired by UV radiation. Another means of protection is achieved by the production of screening pigments including mycosporine-like amino acids (MAA) or scytonemins. MAAs are also produced by phytoplankton and macroalgae. In several organisms action spectra were measured which indicate that MAA synthesis is induced by UV in most cases. These sunscreen pigments prevent short wavelength radiation from reaching the UV sensitive DNA where it induces thymine dimers. Remaining dimers are removed by photorepair which involves the enzyme photolyase. The photosynthetic apparatus is another main target in primary aquatic biomass producers. Inhibition of the photosynthetic electron transport chain can be determined by oxygen measurements or by pulse amplitude modulated (PAM) fluorescence. Plants reduce the potentially deleterious effects of solar UV by decreasing the photosynthetic electron transport in photosystem II, a process called photoinhibition. Despite the dramatic effects of even ambient solar UV on individual species and physiological responses, the effect of ozone depletion on whole ecosystems is surprisingly low and close to the noise level induced by all other environmental factors such as mixing layer depth, cloud cover and temperature.

Pp. 1-101

Analysis of Invertebrates

T. R. Crompton

Aquatic ecosystems produce about 50% of the global biomass and play an important role in atmospheric carbon dioxide cycling. Since the primary producers are confined to the euphotic zone for energetic reasons, they are simultaneously exposed to short wavelength radiation. Solar UV affects growth, reproduction, photosynthetic production and many other physiological processes. Cyanobacteria are important ubiquitous prokaryotes which populate terrestrial and aquatic habitats. They account for up to 40 % of the marine biomass production and are important components of wet land ecosystems such as rice paddy fields. These organisms are also highly impaired by solar UV, but they and other motile microorganisms have developed mitigating strategies to protect themselves from this stress. One protection strategy is based on vertical migrations within the water column or a microbial mats. However, both motility and orientation are impaired by UV radiation. Another means of protection is achieved by the production of screening pigments including mycosporine-like amino acids (MAA) or scytonemins. MAAs are also produced by phytoplankton and macroalgae. In several organisms action spectra were measured which indicate that MAA synthesis is induced by UV in most cases. These sunscreen pigments prevent short wavelength radiation from reaching the UV sensitive DNA where it induces thymine dimers. Remaining dimers are removed by photorepair which involves the enzyme photolyase. The photosynthetic apparatus is another main target in primary aquatic biomass producers. Inhibition of the photosynthetic electron transport chain can be determined by oxygen measurements or by pulse amplitude modulated (PAM) fluorescence. Plants reduce the potentially deleterious effects of solar UV by decreasing the photosynthetic electron transport in photosystem II, a process called photoinhibition. Despite the dramatic effects of even ambient solar UV on individual species and physiological responses, the effect of ozone depletion on whole ecosystems is surprisingly low and close to the noise level induced by all other environmental factors such as mixing layer depth, cloud cover and temperature.

Pp. 103-148

Analysis of Water Plant Life

T. R. Crompton

Aquatic ecosystems produce about 50% of the global biomass and play an important role in atmospheric carbon dioxide cycling. Since the primary producers are confined to the euphotic zone for energetic reasons, they are simultaneously exposed to short wavelength radiation. Solar UV affects growth, reproduction, photosynthetic production and many other physiological processes. Cyanobacteria are important ubiquitous prokaryotes which populate terrestrial and aquatic habitats. They account for up to 40 % of the marine biomass production and are important components of wet land ecosystems such as rice paddy fields. These organisms are also highly impaired by solar UV, but they and other motile microorganisms have developed mitigating strategies to protect themselves from this stress. One protection strategy is based on vertical migrations within the water column or a microbial mats. However, both motility and orientation are impaired by UV radiation. Another means of protection is achieved by the production of screening pigments including mycosporine-like amino acids (MAA) or scytonemins. MAAs are also produced by phytoplankton and macroalgae. In several organisms action spectra were measured which indicate that MAA synthesis is induced by UV in most cases. These sunscreen pigments prevent short wavelength radiation from reaching the UV sensitive DNA where it induces thymine dimers. Remaining dimers are removed by photorepair which involves the enzyme photolyase. The photosynthetic apparatus is another main target in primary aquatic biomass producers. Inhibition of the photosynthetic electron transport chain can be determined by oxygen measurements or by pulse amplitude modulated (PAM) fluorescence. Plants reduce the potentially deleterious effects of solar UV by decreasing the photosynthetic electron transport in photosystem II, a process called photoinhibition. Despite the dramatic effects of even ambient solar UV on individual species and physiological responses, the effect of ozone depletion on whole ecosystems is surprisingly low and close to the noise level induced by all other environmental factors such as mixing layer depth, cloud cover and temperature.

Pp. 149-180

Pollution Levels in the Aqueous Environment

T. R. Crompton

Aquatic ecosystems produce about 50% of the global biomass and play an important role in atmospheric carbon dioxide cycling. Since the primary producers are confined to the euphotic zone for energetic reasons, they are simultaneously exposed to short wavelength radiation. Solar UV affects growth, reproduction, photosynthetic production and many other physiological processes. Cyanobacteria are important ubiquitous prokaryotes which populate terrestrial and aquatic habitats. They account for up to 40 % of the marine biomass production and are important components of wet land ecosystems such as rice paddy fields. These organisms are also highly impaired by solar UV, but they and other motile microorganisms have developed mitigating strategies to protect themselves from this stress. One protection strategy is based on vertical migrations within the water column or a microbial mats. However, both motility and orientation are impaired by UV radiation. Another means of protection is achieved by the production of screening pigments including mycosporine-like amino acids (MAA) or scytonemins. MAAs are also produced by phytoplankton and macroalgae. In several organisms action spectra were measured which indicate that MAA synthesis is induced by UV in most cases. These sunscreen pigments prevent short wavelength radiation from reaching the UV sensitive DNA where it induces thymine dimers. Remaining dimers are removed by photorepair which involves the enzyme photolyase. The photosynthetic apparatus is another main target in primary aquatic biomass producers. Inhibition of the photosynthetic electron transport chain can be determined by oxygen measurements or by pulse amplitude modulated (PAM) fluorescence. Plants reduce the potentially deleterious effects of solar UV by decreasing the photosynthetic electron transport in photosystem II, a process called photoinhibition. Despite the dramatic effects of even ambient solar UV on individual species and physiological responses, the effect of ozone depletion on whole ecosystems is surprisingly low and close to the noise level induced by all other environmental factors such as mixing layer depth, cloud cover and temperature.

Pp. 181-205

Quantitative Toxicity Data for Cations in Fish and Invertebrates

T. R. Crompton

Aquatic ecosystems produce about 50% of the global biomass and play an important role in atmospheric carbon dioxide cycling. Since the primary producers are confined to the euphotic zone for energetic reasons, they are simultaneously exposed to short wavelength radiation. Solar UV affects growth, reproduction, photosynthetic production and many other physiological processes. Cyanobacteria are important ubiquitous prokaryotes which populate terrestrial and aquatic habitats. They account for up to 40 % of the marine biomass production and are important components of wet land ecosystems such as rice paddy fields. These organisms are also highly impaired by solar UV, but they and other motile microorganisms have developed mitigating strategies to protect themselves from this stress. One protection strategy is based on vertical migrations within the water column or a microbial mats. However, both motility and orientation are impaired by UV radiation. Another means of protection is achieved by the production of screening pigments including mycosporine-like amino acids (MAA) or scytonemins. MAAs are also produced by phytoplankton and macroalgae. In several organisms action spectra were measured which indicate that MAA synthesis is induced by UV in most cases. These sunscreen pigments prevent short wavelength radiation from reaching the UV sensitive DNA where it induces thymine dimers. Remaining dimers are removed by photorepair which involves the enzyme photolyase. The photosynthetic apparatus is another main target in primary aquatic biomass producers. Inhibition of the photosynthetic electron transport chain can be determined by oxygen measurements or by pulse amplitude modulated (PAM) fluorescence. Plants reduce the potentially deleterious effects of solar UV by decreasing the photosynthetic electron transport in photosystem II, a process called photoinhibition. Despite the dramatic effects of even ambient solar UV on individual species and physiological responses, the effect of ozone depletion on whole ecosystems is surprisingly low and close to the noise level induced by all other environmental factors such as mixing layer depth, cloud cover and temperature.

Pp. 207-260

Qualitative Toxicity Data for Organic Compounds in Fish and Invertebrates

T. R. Crompton

Aquatic ecosystems produce about 50% of the global biomass and play an important role in atmospheric carbon dioxide cycling. Since the primary producers are confined to the euphotic zone for energetic reasons, they are simultaneously exposed to short wavelength radiation. Solar UV affects growth, reproduction, photosynthetic production and many other physiological processes. Cyanobacteria are important ubiquitous prokaryotes which populate terrestrial and aquatic habitats. They account for up to 40 % of the marine biomass production and are important components of wet land ecosystems such as rice paddy fields. These organisms are also highly impaired by solar UV, but they and other motile microorganisms have developed mitigating strategies to protect themselves from this stress. One protection strategy is based on vertical migrations within the water column or a microbial mats. However, both motility and orientation are impaired by UV radiation. Another means of protection is achieved by the production of screening pigments including mycosporine-like amino acids (MAA) or scytonemins. MAAs are also produced by phytoplankton and macroalgae. In several organisms action spectra were measured which indicate that MAA synthesis is induced by UV in most cases. These sunscreen pigments prevent short wavelength radiation from reaching the UV sensitive DNA where it induces thymine dimers. Remaining dimers are removed by photorepair which involves the enzyme photolyase. The photosynthetic apparatus is another main target in primary aquatic biomass producers. Inhibition of the photosynthetic electron transport chain can be determined by oxygen measurements or by pulse amplitude modulated (PAM) fluorescence. Plants reduce the potentially deleterious effects of solar UV by decreasing the photosynthetic electron transport in photosystem II, a process called photoinhibition. Despite the dramatic effects of even ambient solar UV on individual species and physiological responses, the effect of ozone depletion on whole ecosystems is surprisingly low and close to the noise level induced by all other environmental factors such as mixing layer depth, cloud cover and temperature.

Pp. 261-292

Qualitative Toxicity Data for Organometallic Compounds, Fish and Invertebrates

T. R. Crompton

Aquatic ecosystems produce about 50% of the global biomass and play an important role in atmospheric carbon dioxide cycling. Since the primary producers are confined to the euphotic zone for energetic reasons, they are simultaneously exposed to short wavelength radiation. Solar UV affects growth, reproduction, photosynthetic production and many other physiological processes. Cyanobacteria are important ubiquitous prokaryotes which populate terrestrial and aquatic habitats. They account for up to 40 % of the marine biomass production and are important components of wet land ecosystems such as rice paddy fields. These organisms are also highly impaired by solar UV, but they and other motile microorganisms have developed mitigating strategies to protect themselves from this stress. One protection strategy is based on vertical migrations within the water column or a microbial mats. However, both motility and orientation are impaired by UV radiation. Another means of protection is achieved by the production of screening pigments including mycosporine-like amino acids (MAA) or scytonemins. MAAs are also produced by phytoplankton and macroalgae. In several organisms action spectra were measured which indicate that MAA synthesis is induced by UV in most cases. These sunscreen pigments prevent short wavelength radiation from reaching the UV sensitive DNA where it induces thymine dimers. Remaining dimers are removed by photorepair which involves the enzyme photolyase. The photosynthetic apparatus is another main target in primary aquatic biomass producers. Inhibition of the photosynthetic electron transport chain can be determined by oxygen measurements or by pulse amplitude modulated (PAM) fluorescence. Plants reduce the potentially deleterious effects of solar UV by decreasing the photosynthetic electron transport in photosystem II, a process called photoinhibition. Despite the dramatic effects of even ambient solar UV on individual species and physiological responses, the effect of ozone depletion on whole ecosystems is surprisingly low and close to the noise level induced by all other environmental factors such as mixing layer depth, cloud cover and temperature.

Pp. 293-298

Effect of Toxicants on Phytoplankton, Algae and Weeds

T. R. Crompton

Aquatic ecosystems produce about 50% of the global biomass and play an important role in atmospheric carbon dioxide cycling. Since the primary producers are confined to the euphotic zone for energetic reasons, they are simultaneously exposed to short wavelength radiation. Solar UV affects growth, reproduction, photosynthetic production and many other physiological processes. Cyanobacteria are important ubiquitous prokaryotes which populate terrestrial and aquatic habitats. They account for up to 40 % of the marine biomass production and are important components of wet land ecosystems such as rice paddy fields. These organisms are also highly impaired by solar UV, but they and other motile microorganisms have developed mitigating strategies to protect themselves from this stress. One protection strategy is based on vertical migrations within the water column or a microbial mats. However, both motility and orientation are impaired by UV radiation. Another means of protection is achieved by the production of screening pigments including mycosporine-like amino acids (MAA) or scytonemins. MAAs are also produced by phytoplankton and macroalgae. In several organisms action spectra were measured which indicate that MAA synthesis is induced by UV in most cases. These sunscreen pigments prevent short wavelength radiation from reaching the UV sensitive DNA where it induces thymine dimers. Remaining dimers are removed by photorepair which involves the enzyme photolyase. The photosynthetic apparatus is another main target in primary aquatic biomass producers. Inhibition of the photosynthetic electron transport chain can be determined by oxygen measurements or by pulse amplitude modulated (PAM) fluorescence. Plants reduce the potentially deleterious effects of solar UV by decreasing the photosynthetic electron transport in photosystem II, a process called photoinhibition. Despite the dramatic effects of even ambient solar UV on individual species and physiological responses, the effect of ozone depletion on whole ecosystems is surprisingly low and close to the noise level induced by all other environmental factors such as mixing layer depth, cloud cover and temperature.

Pp. 299-305

Toxicity Index (LC), Mean (S) and Percentile (S) Concentrations of Toxicants

T. R. Crompton

Aquatic ecosystems produce about 50% of the global biomass and play an important role in atmospheric carbon dioxide cycling. Since the primary producers are confined to the euphotic zone for energetic reasons, they are simultaneously exposed to short wavelength radiation. Solar UV affects growth, reproduction, photosynthetic production and many other physiological processes. Cyanobacteria are important ubiquitous prokaryotes which populate terrestrial and aquatic habitats. They account for up to 40 % of the marine biomass production and are important components of wet land ecosystems such as rice paddy fields. These organisms are also highly impaired by solar UV, but they and other motile microorganisms have developed mitigating strategies to protect themselves from this stress. One protection strategy is based on vertical migrations within the water column or a microbial mats. However, both motility and orientation are impaired by UV radiation. Another means of protection is achieved by the production of screening pigments including mycosporine-like amino acids (MAA) or scytonemins. MAAs are also produced by phytoplankton and macroalgae. In several organisms action spectra were measured which indicate that MAA synthesis is induced by UV in most cases. These sunscreen pigments prevent short wavelength radiation from reaching the UV sensitive DNA where it induces thymine dimers. Remaining dimers are removed by photorepair which involves the enzyme photolyase. The photosynthetic apparatus is another main target in primary aquatic biomass producers. Inhibition of the photosynthetic electron transport chain can be determined by oxygen measurements or by pulse amplitude modulated (PAM) fluorescence. Plants reduce the potentially deleterious effects of solar UV by decreasing the photosynthetic electron transport in photosystem II, a process called photoinhibition. Despite the dramatic effects of even ambient solar UV on individual species and physiological responses, the effect of ozone depletion on whole ecosystems is surprisingly low and close to the noise level induced by all other environmental factors such as mixing layer depth, cloud cover and temperature.

Pp. 307-357

Evaluating Toxicity via Water Analysis

T. R. Crompton

Aquatic ecosystems produce about 50% of the global biomass and play an important role in atmospheric carbon dioxide cycling. Since the primary producers are confined to the euphotic zone for energetic reasons, they are simultaneously exposed to short wavelength radiation. Solar UV affects growth, reproduction, photosynthetic production and many other physiological processes. Cyanobacteria are important ubiquitous prokaryotes which populate terrestrial and aquatic habitats. They account for up to 40 % of the marine biomass production and are important components of wet land ecosystems such as rice paddy fields. These organisms are also highly impaired by solar UV, but they and other motile microorganisms have developed mitigating strategies to protect themselves from this stress. One protection strategy is based on vertical migrations within the water column or a microbial mats. However, both motility and orientation are impaired by UV radiation. Another means of protection is achieved by the production of screening pigments including mycosporine-like amino acids (MAA) or scytonemins. MAAs are also produced by phytoplankton and macroalgae. In several organisms action spectra were measured which indicate that MAA synthesis is induced by UV in most cases. These sunscreen pigments prevent short wavelength radiation from reaching the UV sensitive DNA where it induces thymine dimers. Remaining dimers are removed by photorepair which involves the enzyme photolyase. The photosynthetic apparatus is another main target in primary aquatic biomass producers. Inhibition of the photosynthetic electron transport chain can be determined by oxygen measurements or by pulse amplitude modulated (PAM) fluorescence. Plants reduce the potentially deleterious effects of solar UV by decreasing the photosynthetic electron transport in photosystem II, a process called photoinhibition. Despite the dramatic effects of even ambient solar UV on individual species and physiological responses, the effect of ozone depletion on whole ecosystems is surprisingly low and close to the noise level induced by all other environmental factors such as mixing layer depth, cloud cover and temperature.

Pp. 359-378