Catálogo de publicaciones - libros

Compartir en
redes sociales


Computational Turbulent Incompressible Flow: Applied Mathematics: Body and Soul 4

Johan Hoffman Claes Johnson

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Computational Mathematics and Numerical Analysis; Engineering Fluid Dynamics; Classical Continuum Physics; Computational Science and Engineering; Mathematical Methods in Physics; Appl.Mathematics/Computational Methods of Engineering

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-46531-7

ISBN electrónico

978-3-540-46533-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Berlin Heidelberg 2007

Tabla de contenidos

Main Objective

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part I - Overview | Pp. 3-28

Mysteries and Secrets

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part I - Overview | Pp. 29-32

Turbulent Flow and History of Aviation

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part I - Overview | Pp. 33-37

The Euler Equations

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part I - Overview | Pp. 39-42

The Incompressible Euler and Navier–Stokes Equations

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part I - Overview | Pp. 43-47

Triumph and Failure of Mathematics

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part I - Overview | Pp. 49-50

Laminar and Turbulent Flow

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part I - Overview | Pp. 51-55

Computational Turbulence

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part I - Overview | Pp. 57-63

A First Study of Stability

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part I - Overview | Pp. 65-71

d'Alembert's Mystery and Bernoulli's Law

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part I - Overview | Pp. 73-79