Catálogo de publicaciones - libros

Compartir en
redes sociales


Computational Turbulent Incompressible Flow: Applied Mathematics: Body and Soul 4

Johan Hoffman Claes Johnson

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Computational Mathematics and Numerical Analysis; Engineering Fluid Dynamics; Classical Continuum Physics; Computational Science and Engineering; Mathematical Methods in Physics; Appl.Mathematics/Computational Methods of Engineering

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-46531-7

ISBN electrónico

978-3-540-46533-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Berlin Heidelberg 2007

Tabla de contenidos

Implementation of G2 with FEniCS

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part IV - Computational Method | Pp. 229-230

Moving Meshes and ALE Methods

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part IV - Computational Method | Pp. 231-241

Bluff Body Flow

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part V - Flow Fundamentals | Pp. 245-278

Boundary Layers

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part V - Flow Fundamentals | Pp. 279-283

Separation

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part V - Flow Fundamentals | Pp. 285-303

Transition to Turbulence

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part V - Flow Fundamentals | Pp. 305-343

Thermodynamics

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part VI - Loschmidt's Mystery | Pp. 347-350

Joule's 1845 Experiment

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part VI - Loschmidt's Mystery | Pp. 351-355

Compressible Euler in 1d

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part VI - Loschmidt's Mystery | Pp. 357-361

Burgers' Equation

Johan Hoffman; Claes Johnson

MIGP () realizes information retrieval and integration in extensive distributed medical information systems, which adapts to the essential requirement for the development of healthcare information infrastructure. But the existing MIGPs, which are constructed mostly based on database middleware, are very difficult to guarantee local hospital data security and remote accessing legality. In this paper, a MIGP based on the WSRF-compliant HL7 () grid middleware is proposed, which aims to combine the existing HL7 protocol and grid technology to realize medical data and image retrieval through the communications and interoperations with different hospital information systems. We also design the architecture and bring forward a metadata-based scheduling mechanism for our grid platforms. At last, experimental MIGPs are constructed to evaluate the performance of our method.

Part VI - Loschmidt's Mystery | Pp. 363-367