Catálogo de publicaciones - libros

Compartir en
redes sociales


Mobile Communications: Re-negotiation of the Social Sphere

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-85233-931-9

ISBN electrónico

978-1-84628-248-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag London Limited 2005

Tabla de contenidos

Introduction

Rich Ling; Per E. Pedersen

In this paper, we study the performance of timeout-based queue management practices in the context of flood denial-of-service (DoS) attacks on connection-oriented protocols, where server resources are depleted by uncompleted illegitimate requests generated by the attacker. This includes both crippling DoS attacks where services become unavailable and Quality of Service (QoS) degradation attacks. While these queue management strategies were not initially designed for DoS attack protection purposes, they do have the desirable side-effect or providing some protection against them, since illegitimate requests time out more often than legitimate ones. While this fact is intuitive and well-known, very few quantitative results have been published on the potential impact on DoS-attack resilience of various queue management strategies and the associated configuration parameters. We report on the relative performance of various queue strategies under a varying range of attack rates and parameter configurations. We hope that such results will provide usable configuration guidelines for end-server or network appliance queue hardening. The use of such optimisation techniques is complementary to the upstream deployment of other types of DoS-protection countermeasures, and will probably prove most useful in scenarios where some residual attack traffic still bypasses them.

Part 1 - The Dimensions of Mobile Communication | Pp. 3-5

Research Questions for the Evolving Communications Landscape

Leslie Haddon

In this paper, we study the performance of timeout-based queue management practices in the context of flood denial-of-service (DoS) attacks on connection-oriented protocols, where server resources are depleted by uncompleted illegitimate requests generated by the attacker. This includes both crippling DoS attacks where services become unavailable and Quality of Service (QoS) degradation attacks. While these queue management strategies were not initially designed for DoS attack protection purposes, they do have the desirable side-effect or providing some protection against them, since illegitimate requests time out more often than legitimate ones. While this fact is intuitive and well-known, very few quantitative results have been published on the potential impact on DoS-attack resilience of various queue management strategies and the associated configuration parameters. We report on the relative performance of various queue strategies under a varying range of attack rates and parameter configurations. We hope that such results will provide usable configuration guidelines for end-server or network appliance queue hardening. The use of such optimisation techniques is complementary to the upstream deployment of other types of DoS-protection countermeasures, and will probably prove most useful in scenarios where some residual attack traffic still bypasses them.

Part 1 - The Dimensions of Mobile Communication | Pp. 7-22

Mobile Back to Front: Uncertainty and Danger in the Theory—Technology Relation

Steve Woolgar

In this paper, we study the performance of timeout-based queue management practices in the context of flood denial-of-service (DoS) attacks on connection-oriented protocols, where server resources are depleted by uncompleted illegitimate requests generated by the attacker. This includes both crippling DoS attacks where services become unavailable and Quality of Service (QoS) degradation attacks. While these queue management strategies were not initially designed for DoS attack protection purposes, they do have the desirable side-effect or providing some protection against them, since illegitimate requests time out more often than legitimate ones. While this fact is intuitive and well-known, very few quantitative results have been published on the potential impact on DoS-attack resilience of various queue management strategies and the associated configuration parameters. We report on the relative performance of various queue strategies under a varying range of attack rates and parameter configurations. We hope that such results will provide usable configuration guidelines for end-server or network appliance queue hardening. The use of such optimisation techniques is complementary to the upstream deployment of other types of DoS-protection countermeasures, and will probably prove most useful in scenarios where some residual attack traffic still bypasses them.

Part 1 - The Dimensions of Mobile Communication | Pp. 23-43

Wi-Fi Networks and the Reorganization of Wireline—Wireless Relationship

Harmeet Sawhney

In this paper, we study the performance of timeout-based queue management practices in the context of flood denial-of-service (DoS) attacks on connection-oriented protocols, where server resources are depleted by uncompleted illegitimate requests generated by the attacker. This includes both crippling DoS attacks where services become unavailable and Quality of Service (QoS) degradation attacks. While these queue management strategies were not initially designed for DoS attack protection purposes, they do have the desirable side-effect or providing some protection against them, since illegitimate requests time out more often than legitimate ones. While this fact is intuitive and well-known, very few quantitative results have been published on the potential impact on DoS-attack resilience of various queue management strategies and the associated configuration parameters. We report on the relative performance of various queue strategies under a varying range of attack rates and parameter configurations. We hope that such results will provide usable configuration guidelines for end-server or network appliance queue hardening. The use of such optimisation techniques is complementary to the upstream deployment of other types of DoS-protection countermeasures, and will probably prove most useful in scenarios where some residual attack traffic still bypasses them.

Part 1 - The Dimensions of Mobile Communication | Pp. 45-61

Mobile Phones as Fashion Statements: The Co-creation of Mobile Communication’s Public Meaning

James E. Katz; Satomi Sugiyama

In this paper, we study the performance of timeout-based queue management practices in the context of flood denial-of-service (DoS) attacks on connection-oriented protocols, where server resources are depleted by uncompleted illegitimate requests generated by the attacker. This includes both crippling DoS attacks where services become unavailable and Quality of Service (QoS) degradation attacks. While these queue management strategies were not initially designed for DoS attack protection purposes, they do have the desirable side-effect or providing some protection against them, since illegitimate requests time out more often than legitimate ones. While this fact is intuitive and well-known, very few quantitative results have been published on the potential impact on DoS-attack resilience of various queue management strategies and the associated configuration parameters. We report on the relative performance of various queue strategies under a varying range of attack rates and parameter configurations. We hope that such results will provide usable configuration guidelines for end-server or network appliance queue hardening. The use of such optimisation techniques is complementary to the upstream deployment of other types of DoS-protection countermeasures, and will probably prove most useful in scenarios where some residual attack traffic still bypasses them.

Part 1 - The Dimensions of Mobile Communication | Pp. 63-81

Introduction

Alex Taylor

In this paper, we study the performance of timeout-based queue management practices in the context of flood denial-of-service (DoS) attacks on connection-oriented protocols, where server resources are depleted by uncompleted illegitimate requests generated by the attacker. This includes both crippling DoS attacks where services become unavailable and Quality of Service (QoS) degradation attacks. While these queue management strategies were not initially designed for DoS attack protection purposes, they do have the desirable side-effect or providing some protection against them, since illegitimate requests time out more often than legitimate ones. While this fact is intuitive and well-known, very few quantitative results have been published on the potential impact on DoS-attack resilience of various queue management strategies and the associated configuration parameters. We report on the relative performance of various queue strategies under a varying range of attack rates and parameter configurations. We hope that such results will provide usable configuration guidelines for end-server or network appliance queue hardening. The use of such optimisation techniques is complementary to the upstream deployment of other types of DoS-protection countermeasures, and will probably prove most useful in scenarios where some residual attack traffic still bypasses them.

Part 2 - The Public and Private Spaces | Pp. 85-91

Behavioral Changes at the Mobile Workplace: A Symbolic Interactionistic Approach

Tom Erik Julsrud

In this paper, we study the performance of timeout-based queue management practices in the context of flood denial-of-service (DoS) attacks on connection-oriented protocols, where server resources are depleted by uncompleted illegitimate requests generated by the attacker. This includes both crippling DoS attacks where services become unavailable and Quality of Service (QoS) degradation attacks. While these queue management strategies were not initially designed for DoS attack protection purposes, they do have the desirable side-effect or providing some protection against them, since illegitimate requests time out more often than legitimate ones. While this fact is intuitive and well-known, very few quantitative results have been published on the potential impact on DoS-attack resilience of various queue management strategies and the associated configuration parameters. We report on the relative performance of various queue strategies under a varying range of attack rates and parameter configurations. We hope that such results will provide usable configuration guidelines for end-server or network appliance queue hardening. The use of such optimisation techniques is complementary to the upstream deployment of other types of DoS-protection countermeasures, and will probably prove most useful in scenarios where some residual attack traffic still bypasses them.

Part 2 - The Public and Private Spaces | Pp. 93-111

Being Mobile with the Mobile: Cellular Telephony and Renegotiations of Public Transport as Public Sphere

Fernando Paragas

In this paper, we study the performance of timeout-based queue management practices in the context of flood denial-of-service (DoS) attacks on connection-oriented protocols, where server resources are depleted by uncompleted illegitimate requests generated by the attacker. This includes both crippling DoS attacks where services become unavailable and Quality of Service (QoS) degradation attacks. While these queue management strategies were not initially designed for DoS attack protection purposes, they do have the desirable side-effect or providing some protection against them, since illegitimate requests time out more often than legitimate ones. While this fact is intuitive and well-known, very few quantitative results have been published on the potential impact on DoS-attack resilience of various queue management strategies and the associated configuration parameters. We report on the relative performance of various queue strategies under a varying range of attack rates and parameter configurations. We hope that such results will provide usable configuration guidelines for end-server or network appliance queue hardening. The use of such optimisation techniques is complementary to the upstream deployment of other types of DoS-protection countermeasures, and will probably prove most useful in scenarios where some residual attack traffic still bypasses them.

Part 2 - The Public and Private Spaces | Pp. 113-129

Mobile Phones, Japanese Youth, and the Re-placement of Social Contact

Mizuko Ito

In this paper, we study the performance of timeout-based queue management practices in the context of flood denial-of-service (DoS) attacks on connection-oriented protocols, where server resources are depleted by uncompleted illegitimate requests generated by the attacker. This includes both crippling DoS attacks where services become unavailable and Quality of Service (QoS) degradation attacks. While these queue management strategies were not initially designed for DoS attack protection purposes, they do have the desirable side-effect or providing some protection against them, since illegitimate requests time out more often than legitimate ones. While this fact is intuitive and well-known, very few quantitative results have been published on the potential impact on DoS-attack resilience of various queue management strategies and the associated configuration parameters. We report on the relative performance of various queue strategies under a varying range of attack rates and parameter configurations. We hope that such results will provide usable configuration guidelines for end-server or network appliance queue hardening. The use of such optimisation techniques is complementary to the upstream deployment of other types of DoS-protection countermeasures, and will probably prove most useful in scenarios where some residual attack traffic still bypasses them.

Part 2 - The Public and Private Spaces | Pp. 131-148

Phone Talk

Alex Taylor

In this paper, we study the performance of timeout-based queue management practices in the context of flood denial-of-service (DoS) attacks on connection-oriented protocols, where server resources are depleted by uncompleted illegitimate requests generated by the attacker. This includes both crippling DoS attacks where services become unavailable and Quality of Service (QoS) degradation attacks. While these queue management strategies were not initially designed for DoS attack protection purposes, they do have the desirable side-effect or providing some protection against them, since illegitimate requests time out more often than legitimate ones. While this fact is intuitive and well-known, very few quantitative results have been published on the potential impact on DoS-attack resilience of various queue management strategies and the associated configuration parameters. We report on the relative performance of various queue strategies under a varying range of attack rates and parameter configurations. We hope that such results will provide usable configuration guidelines for end-server or network appliance queue hardening. The use of such optimisation techniques is complementary to the upstream deployment of other types of DoS-protection countermeasures, and will probably prove most useful in scenarios where some residual attack traffic still bypasses them.

Part 2 - The Public and Private Spaces | Pp. 149-166