Catálogo de publicaciones - libros

Compartir en
redes sociales


The Frontal Sinus

Stilianos E. Kountakis ; Brent A. Senior ; Wolfgang Draf (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Otorhinolaryngology; Neurosurgery; Head and Neck Surgery; Surgery

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-21143-3

ISBN electrónico

978-3-540-27607-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

History of Frontal Sinus Surgery

Hassan H. Ramadan

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 1-6

Radiologic Anatomy of the Frontal Sinus

Ramon E. Figueroa; Joseph Sullivan

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 7-20

Surgical Anatomy and Embryology of the Frontal Sinus

Carlos S. Duque; Roy R. Casiano

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 21-31

Acute Frontal Sinusitis

Douglas Reh; Peter H. Hwang

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 33-41

Chronic Frontal Rhinosinusitis: Diagnosis and Management

Michael Sillers

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 43-51

Microbiology of Chronic Frontal Sinusitis

Birgit Winther; Jack Gwaltney

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 53-57

Orbital Complications of Frontal Sinusitis

Robert T. Adelson; Bradley F. Marple

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 59-66

CNS Complications of Frontal Sinus Disease

Andrew P. Lane

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 67-74

Frontal-Orbital-Ethmoid Mucoceles

James Palmer; Ioana Schipor

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 75-81

Pott’s Puffy Tumor

Richard R. Orlandi

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 83-86