Catálogo de publicaciones - libros

Compartir en
redes sociales


The Frontal Sinus

Stilianos E. Kountakis ; Brent A. Senior ; Wolfgang Draf (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Otorhinolaryngology; Neurosurgery; Head and Neck Surgery; Surgery

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-21143-3

ISBN electrónico

978-3-540-27607-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

The Frontal Sinus and Nasal Polyps

James A. Stankiewicz; James M. Chow

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 87-93

Allergy and the Frontal Sinus

Berrylin J. Ferguson

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 95-100

The Role of Fungus in Diseases of the Frontal Sinus

Robert T. Adelson; Bradley F. Marple

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 101-113

Frontal Headache

Allen M. Seiden

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 115-126

Pediatric Frontal Sinusitis

Charles W. Gross; Joseph K. Han

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 127-131

Frontal Sinus Fractures

Tanya K. Meyer; John S. Rhee; Timothy L. Smith

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 133-142

Frontal Sinus Cerebrospinal Fluid Leaks

Bradford A. Woodworth; Rodney J. Schlosser

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 143-152

Benign Tumors of the Frontal Sinuses

Brent A. Senior; Marc G. Dubin

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 153-164

Frontal Sinus Malignancies

Christine G. Gourin; David J. Terris

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 165-178

The Endoscopic Frontal Recess Approach

Boris I. Karanfilov; Frederick A. Kuhn

I recently gave a robot demonstration to a class of 1-grade elementary school children. In the school’s gymnasium hall, a few dozen 6-year-olds gathered enthusiastically around a few shiny machines with plenty of sensors and actuators, demonstrating patterns of locomotion. “These robots learned how to move by themselves” – I explained. “Some even developed their own shape”, I said, pointing at a set of 3D-printed plastic robots whose morphology and control evolved in simulation.

Pp. 179-189