Catálogo de publicaciones - libros

Compartir en
redes sociales


User Modeling 2007: 11th International Conference, UM 2007, Corfu, Greece, July 25-29, 2007. Proceedings

Cristina Conati ; Kathleen McCoy ; Georgios Paliouras (eds.)

En conferencia: 11º International Conference on User Modeling (UM) . Corfu, Greece . July 25, 2007 - July 29, 2007

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Artificial Intelligence (incl. Robotics); User Interfaces and Human Computer Interaction; Information Systems Applications (incl. Internet); Simulation and Modeling; Computers and Society; Computer Appl. in Social and Behavioral Sciences

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-73077-4

ISBN electrónico

978-3-540-73078-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2007

Tabla de contenidos

Experience Medium: Toward a New Medium for Exchanging Experiences

Yasuyuki Sumi

In this talk, I will propose a notion of “experience medium” in which we can exchange our experiences in museum touring, daily meetings, collaborative work, etc. The experience medium is a medium for capturing, interpreting, and creating our experiences, i.e., not only verbalized representations of our experiences but also their contextual information (awareness, common sense, atmosphere).

- Invited Papers | Pp. 3-4

A Practical Activity Capture Framework for Personal, Lifetime User Modeling

Max Van Kleek; Howard E. Shrobe

This paper addresses the problem of capturing rich, long-term of users’ interactions with their workstations, for the purpose of deriving predictive, personal user models. Our architecture addresses a number of practical problems with activity capture, including incorporating heterogeneous information from different applications, measuring phenomena with different rates of change, efficiently scheduling knowledge sources, incrementally evolving knowledge representations, and incorporating prior knowledge to combine low-level observations into interpretations better suited for user modeling tasks. We demonstrate that the computational and memory demands of general activity capture are well within reasonable limits even on today’s hardware and software platforms.

- Poster Papers | Pp. 298-302