Catálogo de publicaciones - libros

Compartir en
redes sociales


Data Mining with Computational Intelligence

Lipo Wang Xiuju Fu

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Data Mining and Knowledge Discovery; Database Management; Artificial Intelligence (incl. Robotics)

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-24522-3

ISBN electrónico

978-3-540-28803-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

Introduction

Lipo Wang; Xiuju Fu

While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.

Pp. 1-23

MLP Neural Networks for Time-Series Prediction and Classification

Lipo Wang; Xiuju Fu

While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.

Pp. 25-43

Fuzzy Neural Networks for Bioinformatics

Lipo Wang; Xiuju Fu

While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.

Pp. 45-95

An Improved RBF Neural Network Classifier

Lipo Wang; Xiuju Fu

While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.

Pp. 97-116

Attribute Importance Ranking for Data Dimensionality Reduction

Lipo Wang; Xiuju Fu

While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.

Pp. 117-143

Genetic Algorithms for Class-Dependent Feature Selection

Lipo Wang; Xiuju Fu

While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.

Pp. 145-156

Rule Extraction from RBF Neural Networks

Lipo Wang; Xiuju Fu

While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.

Pp. 157-187

A Hybrid Neural Network For Protein Secondary Structure Prediction

Lipo Wang; Xiuju Fu

While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.

Pp. 189-223

Support Vector Machines for Prediction

Lipo Wang; Xiuju Fu

While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.

Pp. 225-236

Rule Extraction from Support Vector Machines

Lipo Wang; Xiuju Fu

While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.

Pp. 237-248