Catálogo de publicaciones - libros
Data Mining with Computational Intelligence
Lipo Wang Xiuju Fu
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Data Mining and Knowledge Discovery; Database Management; Artificial Intelligence (incl. Robotics)
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-24522-3
ISBN electrónico
978-3-540-28803-9
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2005
Tabla de contenidos
Introduction
Lipo Wang; Xiuju Fu
While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.
Pp. 1-23
MLP Neural Networks for Time-Series Prediction and Classification
Lipo Wang; Xiuju Fu
While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.
Pp. 25-43
Fuzzy Neural Networks for Bioinformatics
Lipo Wang; Xiuju Fu
While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.
Pp. 45-95
An Improved RBF Neural Network Classifier
Lipo Wang; Xiuju Fu
While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.
Pp. 97-116
Attribute Importance Ranking for Data Dimensionality Reduction
Lipo Wang; Xiuju Fu
While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.
Pp. 117-143
Genetic Algorithms for Class-Dependent Feature Selection
Lipo Wang; Xiuju Fu
While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.
Pp. 145-156
Rule Extraction from RBF Neural Networks
Lipo Wang; Xiuju Fu
While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.
Pp. 157-187
A Hybrid Neural Network For Protein Secondary Structure Prediction
Lipo Wang; Xiuju Fu
While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.
Pp. 189-223
Support Vector Machines for Prediction
Lipo Wang; Xiuju Fu
While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.
Pp. 225-236
Rule Extraction from Support Vector Machines
Lipo Wang; Xiuju Fu
While many real-world combinatorial problems can be advantageously modeled and solved using Constraint Programming, scalability remains a major issue in practice. Constraint models that accurately reflect the inherent structure of a problem, solvers that exploit the properties of this structure, and reformulation techniques that modify the problem encoding to reduce the cost of problem solving are typically used to overcome the complexity barrier. In this paper, we investigate such approaches in a geospatial reasoning task, the building-identification problem (BID), introduced and modeled as a Constraint Satisfaction Problem by Michalowski and Knoblock [1]. We introduce an improved constraint model, a custom solver for this problem, and a number of reformulation techniques that modify various aspects of the problem encoding to improve scalability. We show how interleaving these reformulations with the various stages of the solver allows us to solve much larger BID problems than was previously possible. Importantly, we describe the usefulness of our reformulations techniques for general Constraint Satisfaction Problems, beyond the BID application.
Pp. 237-248