Catálogo de publicaciones - libros
Agent-based Supply Network Event Management
Roland Zimmermann
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Programming Techniques; Artificial Intelligence (incl. Robotics)
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-7643-7486-0
ISBN electrónico
978-3-7643-7487-7
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Birkhäuser Verlag 2006
Tabla de contenidos
Introduction
Roland Zimmermann
We present a new algorithm for affine registration of diffusion tensor magnetic resonance (DT-MR) images. The method is based on a new formulation of a point-wise tensor similarity measure, which weights directional and magnitude information differently depending on the type of diffusion. The method is compared to a reference method, which uses normalized mutual information (NMI), calculated either from a fractional anisotropy (FA) map or a -weighted MR image. The registration methods are applied to real and simulated DT-MR images. Visual assessment is done for real data and for simulated data, registration accuracy is defined. The results show that the proposed method outperforms the reference method.
Pp. 1-3
Event Management in Supply Networks
Roland Zimmermann
We present a new algorithm for affine registration of diffusion tensor magnetic resonance (DT-MR) images. The method is based on a new formulation of a point-wise tensor similarity measure, which weights directional and magnitude information differently depending on the type of diffusion. The method is compared to a reference method, which uses normalized mutual information (NMI), calculated either from a fractional anisotropy (FA) map or a -weighted MR image. The registration methods are applied to real and simulated DT-MR images. Visual assessment is done for real data and for simulated data, registration accuracy is defined. The results show that the proposed method outperforms the reference method.
Pp. 5-48
Information Base for Event Management
Roland Zimmermann
We present a new algorithm for affine registration of diffusion tensor magnetic resonance (DT-MR) images. The method is based on a new formulation of a point-wise tensor similarity measure, which weights directional and magnitude information differently depending on the type of diffusion. The method is compared to a reference method, which uses normalized mutual information (NMI), calculated either from a fractional anisotropy (FA) map or a -weighted MR image. The registration methods are applied to real and simulated DT-MR images. Visual assessment is done for real data and for simulated data, registration accuracy is defined. The results show that the proposed method outperforms the reference method.
Pp. 49-86
Event Management Functions
Roland Zimmermann
We present a new algorithm for affine registration of diffusion tensor magnetic resonance (DT-MR) images. The method is based on a new formulation of a point-wise tensor similarity measure, which weights directional and magnitude information differently depending on the type of diffusion. The method is compared to a reference method, which uses normalized mutual information (NMI), calculated either from a fractional anisotropy (FA) map or a -weighted MR image. The registration methods are applied to real and simulated DT-MR images. Visual assessment is done for real data and for simulated data, registration accuracy is defined. The results show that the proposed method outperforms the reference method.
Pp. 87-144
Agent-based Concept
Roland Zimmermann
We present a new algorithm for affine registration of diffusion tensor magnetic resonance (DT-MR) images. The method is based on a new formulation of a point-wise tensor similarity measure, which weights directional and magnitude information differently depending on the type of diffusion. The method is compared to a reference method, which uses normalized mutual information (NMI), calculated either from a fractional anisotropy (FA) map or a -weighted MR image. The registration methods are applied to real and simulated DT-MR images. Visual assessment is done for real data and for simulated data, registration accuracy is defined. The results show that the proposed method outperforms the reference method.
Pp. 145-199
Prototype Implementations
Roland Zimmermann
We present a new algorithm for affine registration of diffusion tensor magnetic resonance (DT-MR) images. The method is based on a new formulation of a point-wise tensor similarity measure, which weights directional and magnitude information differently depending on the type of diffusion. The method is compared to a reference method, which uses normalized mutual information (NMI), calculated either from a fractional anisotropy (FA) map or a -weighted MR image. The registration methods are applied to real and simulated DT-MR images. Visual assessment is done for real data and for simulated data, registration accuracy is defined. The results show that the proposed method outperforms the reference method.
Pp. 201-241
Evaluation
Roland Zimmermann
We present a new algorithm for affine registration of diffusion tensor magnetic resonance (DT-MR) images. The method is based on a new formulation of a point-wise tensor similarity measure, which weights directional and magnitude information differently depending on the type of diffusion. The method is compared to a reference method, which uses normalized mutual information (NMI), calculated either from a fractional anisotropy (FA) map or a -weighted MR image. The registration methods are applied to real and simulated DT-MR images. Visual assessment is done for real data and for simulated data, registration accuracy is defined. The results show that the proposed method outperforms the reference method.
Pp. 243-285
Conclusions and Outlook
Roland Zimmermann
We present a new algorithm for affine registration of diffusion tensor magnetic resonance (DT-MR) images. The method is based on a new formulation of a point-wise tensor similarity measure, which weights directional and magnitude information differently depending on the type of diffusion. The method is compared to a reference method, which uses normalized mutual information (NMI), calculated either from a fractional anisotropy (FA) map or a -weighted MR image. The registration methods are applied to real and simulated DT-MR images. Visual assessment is done for real data and for simulated data, registration accuracy is defined. The results show that the proposed method outperforms the reference method.
Pp. 287-293