Catálogo de publicaciones - libros
Título de Acceso Abierto
One Hundred Years of Chemical Warfare: Research, Deployment, Consequences
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Fritz Haber; Military-Industrial Complex; 1925 Geneva Protocol; Ethics of Chemical Warfare; Dual-use Problem; Anti-plant Chemical Warfare; Chemical Weapons During World War I; Chemical Weapons During World War II; Chemical Weapons in the Middle East; Weapons of Mass Destruction; Lethal Unitary Chemical Agents and Munitions
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No requiere | 2016 | Directory of Open access Books | ||
No requiere | 2016 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-319-39743-6
ISBN electrónico
978-3-319-39745-0
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2016
Cobertura temática
Tabla de contenidos
Introduction to the Assessment—Characteristics of the Region
Markus Quante; Franciscus Colijn; Jan P. Bakker; Werner Härdtle; Hartmut Heinrich; Christiana Lefebvre; Ingeborg Nöhren; Jørgen Eivind Olesen; Thomas Pohlmann; Horst Sterr; Jürgen Sündermann; Merja Helena Tölle
This scene-setting chapter provides the basis for the climate change-related assessments presented in later chapters of this book. It opens with an overview of the geography, demography and major human activities of the North Sea and its boundary countries. This is followed by a series of sections describing the geological and climatic evolution of the North Sea basin, the topography and hydrography of the North Sea (i.e. boundary forcing; thermohaline, wind-driven and tidally-driven regimes; and transport processes), and its current atmospheric climate (focussing on circulation, wind, temperature, precipitation, radiation and cloud cover). This physical description is followed by a review of North Sea ecosystems. Marine and coastal ecosystems are addressed in terms of ecological habitats, ecological dynamics, and human-induced stresses representing a threat (i.e. eutrophication, harmful algal blooms, offshore oil and gas, renewable energy, fisheries, contaminants, tourism, ports, non-indigenous species and climate change). Terrestrial coastal range vegetation is addressed in terms of natural vegetation (salt marshes, dunes, moors/bogs, tundra and alpine vegetation, and forests), semi-natural vegetation (heathlands and grasslands), agricultural areas and artificial surfaces.
Pp. 1-52
Recent Change—Atmosphere
Martin Stendel; Else van den Besselaar; Abdel Hannachi; Elizabeth C. Kent; Christiana Lefebvre; Frederik Schenk; Gerard van der Schrier; Tim Woollings
This chapter examines past and present studies of variability and changes in atmospheric variables within the North Sea region over the instrumental period; roughly the past 200 years. The variables addressed are large-scale circulation, pressure and wind, surface air temperature, precipitation and radiative properties (clouds, solar radiation, and sunshine duration). Temperature has increased everywhere in the North Sea region, especially in spring and in the north. Precipitation has increased in the north and decreased in the south. There has been a north-eastward shift in storm tracks, which agrees with climate model projections. Due to large internal variability, it is not clear which aspects of the observed changes are due to anthropogenic activities and which are internally forced, and long-term trends are difficult to deduce. The number of deep cyclones seems to have increased (but not the total number of cyclones). The persistence of circulation types seems to have increased over the past century, with ‘more extreme’ extreme events. Changes in extreme weather events, however, are difficult to assess due to changes in instrumentation, station relocations, and problems with digitisation. Without thorough quality control digitised datasets may be useless or even counterproductive. Reanalyses are useful as long as biases introduced by inhomogeneities are properly addressed. It is unclear to what extent circulation over the North Sea region is controlled by distant factors, especially changes in Arctic sea ice.
Part I - Recent Climate Change (Past 200 Years) | Pp. 55-84
Recent Change—North Sea
John Huthnance; Ralf Weisse; Thomas Wahl; Helmuth Thomas; Julie Pietrzak; Alejandro Jose Souza; Sytze van Heteren; Natalija Schmelzer; Justus van Beusekom; Franciscus Colijn; Ivan Haigh; Solfrid Hjøllo; Jürgen Holfort; Elizabeth C. Kent; Wilfried Kühn; Peter Loewe; Ina Lorkowski; Kjell Arne Mork; Johannes Pätsch; Markus Quante; Lesley Salt; John Siddorn; Tim Smyth; Andreas Sterl; Philip Woodworth
This chapter discusses past and ongoing change in the following physical variables within the North Sea: temperature, salinity and stratification; currents and circulation; mean sea level; and extreme sea levels. Also considered are carbon dioxide; pH and nutrients; oxygen; suspended particulate matter and turbidity; coastal erosion, sedimentation and morphology; and sea ice. The distinctive character of the Wadden Sea is addressed, with a particular focus on nutrients and sediments. This chapter covers the past 200 years and focuses on the historical development of evidence (measurements, process understanding and models), the form, duration and accuracy of the evidence available, and what the evidence shows in terms of the state and trends in the respective variables. Much work has focused on detecting long-term change in the North Sea region, either from measurements or with models. Attempts to attribute such changes to, for example, anthropogenic forcing are still missing for the North Sea. Studies are urgently needed to assess consistency between observed changes and current expectations, in order to increase the level of confidence in projections of expected future conditions.
Part I - Recent Climate Change (Past 200 Years) | Pp. 85-136
Recent Change—River Flow
Jaap Kwadijk; Nigel W. Arnell; Christoph Mudersbach; Mark de Weerd; Aart Kroon; Markus Quante
This chapter reviews recent trends and variability in river flows to the North Sea. The main contributors are the River Elbe and the River Rhine. In addition to these large rivers many smaller rivers also discharge into the North Sea. However, by far the biggest contributor is the Baltic Sea outflow. Observation records for the major rivers draining into the North Sea are relatively long, while records for the smaller rivers are typically much shorter. Variability in flow is dependent on variations in weather—mainly precipitation and temperature—from year to year, but also on a wide range of direct and indirect human interventions in the North Sea basin. Rivers draining into the North Sea show considerable interannual and decadal variability in annual discharge. In northern areas this is closely associated with variation in the North Atlantic Oscillation, particularly in winter. Discharge to the North Sea in winter appears to be increasing, but there is little evidence of a widespread trend in summer inflow. Higher winter temperatures appear to have led to higher winter flows, as winter precipitation increasingly falls as rain rather than snow. To date, no significant trends in response to climate change are apparent for most of the individual rivers discharging into the North Sea.
Part I - Recent Climate Change (Past 200 Years) | Pp. 137-146
Projected Change—Atmosphere
Wilhelm May; Anette Ganske; Gregor C. Leckebusch; Burkhardt Rockel; Birger Tinz; Uwe Ulbrich
Several aspects describing the state of the atmosphere in the North Sea region are considered in this chapter. These include large-scale circulation, means and extremes in temperature and precipitation, cyclones and winds, and radiation and clouds. The climate projections reveal several pronounced future changes in the state of the atmosphere in the North Sea region, both in the free atmosphere and near the surface: amplification and an eastward shift in the pattern of NAO variability in autumn and winter; changes in the storm track with increased cyclone density over western Europe in winter and reduced cyclone density on the southern flank in summer; more frequent strong winds from westerly directions and less frequent strong winds from south-easterly directions; marked mean warming of 1.7–3.2 °C for different scenarios, with stronger warming in winter than in summer and a relatively strong warming over southern Norway; more intense extremes in daily maximum temperature and reduced extremes in daily minimum temperature, both in strength and frequency; an increase in mean precipitation during the cold season and a reduction during the warm season; a pronounced increase in the intensity of heavy daily precipitation events, particularly in winter; a considerable increase in the intensity of extreme hourly precipitation in summer; an increase (decrease) in cloud cover in the northern (southern) part of the North Sea region, resulting in a decrease (increase) in net solar radiation at the surface.
Part II - Future Climate Change | Pp. 149-173
Projected Change—North Sea
Corinna Schrum; Jason Lowe; H. E. Markus Meier; Iris Grabemann; Jason Holt; Moritz Mathis; Thomas Pohlmann; Morten D. Skogen; Andreas Sterl; Sarah Wakelin
Increasing numbers of regional climate change scenario assessments have become available for the North Sea. A critical review of the regional studies has helped identify robust changes, challenges, uncertainties and specific recommendations for future research. Coherent findings from the climate change impact studies reviewed in this chapter include overall increases in sea level and ocean temperature, a freshening of the North Sea, an increase in ocean acidification and a decrease in primary production. However, findings from multi-model ensembles show the amplitude and spatial pattern of the projected changes in sea level, temperature, salinity and primary production are not consistent among the various regional projections and remain uncertain. Different approaches are used to downscale global climate change impacts, each with advantages and disadvantages. Regardless of the downscaling method employed, the regional studies are ultimately affected by the forcing global climate models. Projecting regional climate change impacts on biogeochemistry and primary production is currently limited by a lack of consistent downscaling approaches for marine and terrestrial impacts. Substantial natural variability in the North Sea region from annual to multi-decadal time scales is a particular challenge for projecting regional climate change impacts. Natural variability dominates long-term trends in wind fields and strongly wind-influenced characteristics like local sea level, storm surges, surface waves, circulation and local transport pattern. Multi-decadal variations bias changes projected for 20- or 30-year time slices. Disentangling natural variations and regional climate change impacts is a remaining challenge for the North Sea and reliable predictions concerning strongly wind-influenced characteristics are impossible.
Part II - Future Climate Change | Pp. 175-217
Projected Change—River Flow and Urban Drainage
Patrick Willems; Benjamin Lloyd-Hughes
Hydrological extremes, largely driven by precipitation, are projected to become more intense within the North Sea region. Quantifying future changes in hydrology is difficult, mainly due to the high uncertainties in future greenhouse gas emissions and climate model output. Nevertheless, models suggest that peak river flow in many rivers may be up to 30 % higher by 2100, and in some rivers even higher. The greatest increases are projected for the northern basins. Earlier spring floods are projected for snow-dominated catchments but this does not always cause an increase in peak flows; peak flows may decrease if higher spring temperatures lead to reduced snow storage. An increase in rain-fed flow in winter and autumn may change the seasonality of peak flows and floods. The proximity of a river basin to the ocean is also important; the closer the two the greater the potential damping of any climate change effect. In urban catchments, the specific characteristics of the drainage system will dictate whether the net result of the climate change effect, for example the projected increase in short-duration rainfall extremes, is to damp or amplify the impact of this change in precipitation. The response in terms of sewer flood and overflow frequencies and volumes is highly non-linear. The combined impact of climate change and increased urbanisation in some parts of the North Sea region could result in as much as a four-fold increase in sewer overflow volumes.
Part II - Future Climate Change | Pp. 219-237
Environmental Impacts—Marine Ecosystems
Keith M. Brander; Geir Ottersen; Jan P. Bakker; Gregory Beaugrand; Helena Herr; Stefan Garthe; Anita Gilles; Andrew Kenny; Ursula Siebert; Hein Rune Skjoldal; Ingrid Tulp
This chapter presents a review of what is known about the impacts of climate change on the biota (plankton, benthos, fish, seabirds and marine mammals) of the North Sea. Examples show how the changing North Sea environment is affecting biological processes and organisation at all scales, including the physiology, reproduction, growth, survival, behaviour and transport of individuals; the distribution, dynamics and evolution of populations; and the trophic structure and coupling of ecosystems. These complex responses can be detected because there are detailed long-term biological and environmental records for the North Sea; written records go back 500 years and archaeological records many thousands of years. The information presented here shows that the composition and productivity of the North Sea marine ecosystem is clearly affected by climate change and that this will have consequences for sustainable levels of harvesting and other ecosystem services in the future. Multi-variate ocean climate indicators that can be used to monitor and warn of changes in composition and productivity are now being developed for the North Sea.
Part III - Impacts of Recent and Future Climate Change on Ecosystems | Pp. 241-274
Environmental Impacts—Coastal Ecosystems
Jan P. Bakker; Andreas C.W. Baas; Jesper Bartholdy; Laurence Jones; Gerben Ruessink; Stijn Temmerman; Martijn van de Pol
This chapter examines the impacts of climate change on the natural coastal ecosystems in the North Sea region. These comprise sandy shores and dunes and salt marshes in estuaries and along the coast. The chapter starts by describing the characteristic geomorphological features of these systems and the importance of sediment transport. Consideration is then given to the role of bioengineering organisms in feedback relationships with substrate, how changes in physical conditions such as embankments affect coastal systems, and the effects of livestock. The effects of climate change—principally accelerated sea-level rise, and changes in the wind climate, temperature and precipitation—on these factors affecting coastal ecosystems are then discussed. Although the focus of this chapter is on the interaction of abiotic conditions and the vegetation, the potential impacts of climate change on the distribution of plant species and on birds breeding in salt marshes is also addressed. Climate impacts on birds, mammals and fish species are covered in other chapters.
Part III - Impacts of Recent and Future Climate Change on Ecosystems | Pp. 275-314
Environmental Impacts—Lake Ecosystems
Rita Adrian; Dag Olav Hessen; Thorsten Blenckner; Helmut Hillebrand; Sabine Hilt; Erik Jeppesen; David M. Livingstone; Dennis Trolle
The North Sea region contains a vast number of lakes; from shallow, highly eutrophic water bodies in agricultural areas to deep, oligotrophic systems in pristine high-latitude or high-altitude areas. These freshwaters and the biota they contain are highly vulnerable to climate change. As largely closed systems, lakes are ideally suited to studying climate-induced effects via changes in ice cover, hydrology and temperature, as well as via biological communities (phenology, species and size distribution, food-web dynamics, life-history traits, growth and respiration, nutrient dynamics and ecosystem metabolism). This chapter focuses on change in natural lakes and on parameters for which their climate-driven responses have major impacts on ecosystem properties such as productivity, community composition, metabolism and biodiversity. It also points to the importance of addressing different temporal scales and variability in driving and response variables along with threshold-driven responses to environmental forces. Exceedance of critical thresholds may result in abrupt changes in particular elements of an ecosystem. Modelling climate-driven physical responses like ice-cover duration, stratification periods and thermal profiles in lakes have shown major advances, and the chapter provide recent achievements in this field for northern lakes. Finally, there is a tentative summary of the level of certainty for key climatic impacts on freshwater ecosystems. Wherever possible, data and examples are drawn from the North Sea region.
Part III - Impacts of Recent and Future Climate Change on Ecosystems | Pp. 315-340