Catálogo de publicaciones - libros

Compartir en
redes sociales


Emergent Computation: Emphasizing Bioinformatics

Matthew Simon

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Biophysics and Biological Physics; Biomedical Engineering; Biochemical Engineering

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-22046-8

ISBN electrónico

978-0-387-27270-2

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, Inc. 2005

Tabla de contenidos

A Review of Chemistry

Matthew Simon

Gene set enrichment analysis is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. In this paper we present a novel method integrating gene interaction information with Gene Ontology (GO) for the construction of new interesting enriched gene sets. The experimental results show that the introduced method improves over traditional methods that compute the enrichment of a single GO terms, i.e. that it is capable to find new statistically relevant descriptions of the biology governing the experiments not detectable by the existing methods.

Part I - Emergent Computation: Bioinformatics | Pp. 3-73

A Review of Aspects of Automata Theory

Matthew Simon

Gene set enrichment analysis is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. In this paper we present a novel method integrating gene interaction information with Gene Ontology (GO) for the construction of new interesting enriched gene sets. The experimental results show that the introduced method improves over traditional methods that compute the enrichment of a single GO terms, i.e. that it is capable to find new statistically relevant descriptions of the biology governing the experiments not detectable by the existing methods.

Part I - Emergent Computation: Bioinformatics | Pp. 75-86

The Beginning Numbers

Matthew Simon

Gene set enrichment analysis is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. In this paper we present a novel method integrating gene interaction information with Gene Ontology (GO) for the construction of new interesting enriched gene sets. The experimental results show that the introduced method improves over traditional methods that compute the enrichment of a single GO terms, i.e. that it is capable to find new statistically relevant descriptions of the biology governing the experiments not detectable by the existing methods.

Part I - Emergent Computation: Bioinformatics | Pp. 87-114

Regular Languages: DNA and RNA

Matthew Simon

Gene set enrichment analysis is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. In this paper we present a novel method integrating gene interaction information with Gene Ontology (GO) for the construction of new interesting enriched gene sets. The experimental results show that the introduced method improves over traditional methods that compute the enrichment of a single GO terms, i.e. that it is capable to find new statistically relevant descriptions of the biology governing the experiments not detectable by the existing methods.

Part I - Emergent Computation: Bioinformatics | Pp. 115-144

Context-Free Languages: DNA and RNA

Matthew Simon

Gene set enrichment analysis is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. In this paper we present a novel method integrating gene interaction information with Gene Ontology (GO) for the construction of new interesting enriched gene sets. The experimental results show that the introduced method improves over traditional methods that compute the enrichment of a single GO terms, i.e. that it is capable to find new statistically relevant descriptions of the biology governing the experiments not detectable by the existing methods.

Part I - Emergent Computation: Bioinformatics | Pp. 145-196

Context-Sensitive Languages: DNA, RNA, Proteins

Matthew Simon

Gene set enrichment analysis is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. In this paper we present a novel method integrating gene interaction information with Gene Ontology (GO) for the construction of new interesting enriched gene sets. The experimental results show that the introduced method improves over traditional methods that compute the enrichment of a single GO terms, i.e. that it is capable to find new statistically relevant descriptions of the biology governing the experiments not detectable by the existing methods.

Part I - Emergent Computation: Bioinformatics | Pp. 197-233

Turing Machines and Sub-Turing Machines

Matthew Simon

Gene set enrichment analysis is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. In this paper we present a novel method integrating gene interaction information with Gene Ontology (GO) for the construction of new interesting enriched gene sets. The experimental results show that the introduced method improves over traditional methods that compute the enrichment of a single GO terms, i.e. that it is capable to find new statistically relevant descriptions of the biology governing the experiments not detectable by the existing methods.

Part I - Emergent Computation: Bioinformatics | Pp. 235-258

Splicing Systems, H Systems

Matthew Simon

Gene set enrichment analysis is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. In this paper we present a novel method integrating gene interaction information with Gene Ontology (GO) for the construction of new interesting enriched gene sets. The experimental results show that the introduced method improves over traditional methods that compute the enrichment of a single GO terms, i.e. that it is capable to find new statistically relevant descriptions of the biology governing the experiments not detectable by the existing methods.

Part I - Emergent Computation: Bioinformatics | Pp. 259-311

tRNA Structure

Matthew Simon

Gene set enrichment analysis is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. In this paper we present a novel method integrating gene interaction information with Gene Ontology (GO) for the construction of new interesting enriched gene sets. The experimental results show that the introduced method improves over traditional methods that compute the enrichment of a single GO terms, i.e. that it is capable to find new statistically relevant descriptions of the biology governing the experiments not detectable by the existing methods.

Part I - Emergent Computation: Bioinformatics | Pp. 313-338

Semigroups and Bioinformatics

Matthew Simon

Gene set enrichment analysis is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. In this paper we present a novel method integrating gene interaction information with Gene Ontology (GO) for the construction of new interesting enriched gene sets. The experimental results show that the introduced method improves over traditional methods that compute the enrichment of a single GO terms, i.e. that it is capable to find new statistically relevant descriptions of the biology governing the experiments not detectable by the existing methods.

Part I - Emergent Computation: Bioinformatics | Pp. 339-343