Catálogo de publicaciones - libros
Laparoscopic Urologic Surgery in Malignancies
Jean J.M.C.H. de la Rosette ; Inderbir S. Gill (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Urology; Oncology; Surgical Oncology
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-20512-8
ISBN electrónico
978-3-540-27606-7
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Berlin Heidelberg 2005
Cobertura temática
Tabla de contenidos
Transperitoneal Laparoscopic Adrenalectomy in Malignancies
Giorgio Guazzoni; Andrea Cestari; Francesco Montorsi; Patrizio Rigatti
Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) | ∈ {0,1,2,..., − 1}, ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.
In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).
1 - Adrenal Cancer | Pp. 3-10
Retroperitoneal Laparoscopic Adrenalectomy for Malignancy
Simon V. Bariol; David A. Tolley
Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) | ∈ {0,1,2,..., − 1}, ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.
In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).
1 - Adrenal Cancer | Pp. 11-16
Transperitoneal Radical Nephrectomy
Alwin F. Tan; Adrian D. Joyce
Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) | ∈ {0,1,2,..., − 1}, ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.
In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).
2 - Renal Cell Carcinoma I | Pp. 19-28
Extraperitoneal Laparoscopic Radical Nephrectomy
András Hoznek; Laurent Salomon; Clément-Claude Abbou
Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) | ∈ {0,1,2,..., − 1}, ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.
In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).
2 - Renal Cell Carcinoma I | Pp. 29-38
Hand-Assisted Laparoscopic Nephrectomy
François Rozet; Declan Cahill; François Desgrandchamps
Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) | ∈ {0,1,2,..., − 1}, ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.
In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).
2 - Renal Cell Carcinoma I | Pp. 39-46
Laparoscopic Partial Nephrectomy
Antonio Finelli; Inderbir S. Gill
Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) | ∈ {0,1,2,..., − 1}, ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.
In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).
3 - Renal Cell Carcinoma II | Pp. 49-57
Cryoablation and Other Invasive and Noninvasive Ablative Renal Procedures
Patrick S. Lowry; Stephen Y. Nakada
Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) | ∈ {0,1,2,..., − 1}, ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.
In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).
3 - Renal Cell Carcinoma II | Pp. 59-70
Laparoscopic Radical Nephroureterectomy for Upper Tract Transitional Cell Carcinoma
Juan Palou; Antonio Rosales; Nico De Graeve; Humberto Villavicencio
Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) | ∈ {0,1,2,..., − 1}, ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.
In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).
Pp. 71-86
Laparoscopic Radical Cystectomy and Intracorporeally Constructed Sigma-Rectum Pouch (Mainz Pouch II)
Ingolf Tuerk
Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) | ∈ {0,1,2,..., − 1}, ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.
In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).
5 - Bladder Cancer | Pp. 89-96
Laparoscopic Radical Cystectomy with Orthotopic Bladder Replacement
Roland F. van Velthoven; Jens Rassweiler
Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) | ∈ {0,1,2,..., − 1}, ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.
In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).
5 - Bladder Cancer | Pp. 97-113