Catálogo de publicaciones - libros

Compartir en
redes sociales


Laparoscopic Urologic Surgery in Malignancies

Jean J.M.C.H. de la Rosette ; Inderbir S. Gill (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Urology; Oncology; Surgical Oncology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-20512-8

ISBN electrónico

978-3-540-27606-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Berlin Heidelberg 2005

Tabla de contenidos

Laparoscopic Pelvic Lymph Node Dissection

Brunolf W. Lagerveld; Jean J. M. C. H. de la Rosette

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

6 - Prostate | Pp. 117-132

Extraperitoneal Laparoscopic Radical Prostatectomy: The Brussels Technique

Renaud Bollens; Sarb Sandhu; Thierry Roumeguere; Claude Schulman

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

6 - Prostate | Pp. 133-140

Laparoscopic Radical Prostatectomy: The Transperitoneal Antegrade Approach

Karim Touijer; Edouard Trabulsi; Waleed Hassen; Bertrand Guillonneau

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

6 - Prostate | Pp. 141-148

The Laparoscopic Radical Prostatovesiculectomy — Transperitoneal Access

Thomas Frede; Michael Schulze; Reinaldo Marrero; Ahmed Hammady; Dogu Teber; Jens Rassweiler

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

6 - Prostate | Pp. 149-161

Robotic Radical Prostatectomy: Surgical Technique

Mani Menon; Michael J. Fumo; Ashok K. Hemal

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

6 - Prostate | Pp. 163-176

Extraperitoneal Versus Transperitoneal Laparoscopic Radical Prostatectomy

François Rozet; Carlos Arroyo; Xavier Cathelineau; Eric Barret; Guy Vallancien

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

6 - Prostate | Pp. 177-184

Handling Complications in Laparoscopic Radical Prostatectomy

Luis Martínez-Piñeiro; Hanna Pérez-Chrzanowska; Jorge Serra González; Jesús J. de la Peña

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

6 - Prostate | Pp. 185-200

Laparoscopic Retroperitoneal Lymph Node Dissection for Testicular Tumors

Gunther Janetschek

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 201-212

Morcellation or Intact Extraction in Laparoscopic Radical Nephrectomy

Yoshinari Ono; Yohei Hattori

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 213-219

Focusing Our Attention on Trocar Seeding!

Giampaolo Bianchi; Salvatore Micali; Antonio Celia; Adara Caruso; Guglielmo Breda

Given a pair of non-negative integers and , (,) denotes a square lattice graph with a vertex set {0,1,2,..., – 1} × {0,1,2,..., – 1}, where a pair of two vertices is adjacent if and only if the distance is equal to 1. A triangular lattice graph (,) has a vertex set {( + ) |  ∈ {0,1,2,..., − 1},  ∈ {0,1,2,..., − 1}} where , and an edge set consists of a pair of vertices with unit distance. Let (,) and (,) be the th power of the graph (,) and (,), respectively. Given an undirected graph = (,) and a non-negative vertex weight function , a multicoloring of is an assignment of colors to such that each vertex ∈ admits () colors and every adjacent pair of two vertices does not share a common color.

In this paper, we show necessary and sufficient conditions that [∀ , (,) is perfect] and/or [∀ , (,) is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring ((,),) and ((,),).

Pp. 221-228